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Demand response



A definition

Demand Response or Demand Side Management refers to the manipulation and

controlling of the demand to fulfill some requirements.
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DR through the lens of Resource Management.

This is DR from the supplier point of view.

DR can be helpful when the demand is too high and it becomes expensive to level the

supply with the demand.
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Consumption trend.

The energy demand is increasing each

year.

Note that the significant rise is from

Asia. This is particularly due to China

and India. However the alarming

increase rate in 2023 belongs to India

(7.3%, twice the 2010–2019 avg.)

and Saudi Arabia.

However, the overall global

consumption has slowed down during

the past 2–3 years. In particular, we

see a decrease (-3.3%) in Europe.
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DR through the lens of Engery Transition.

This is more like DR from the consumer point of view.

Renewables are highly uncertain. So we need to be more flexible and be able to freely

schedule our loads.
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What is flexibility?

We need to have options to...

• monitor consumption,

• choose energy sources at will (at any times!),

• produce and store energy when possible,

• schedule the use of each loads,

• etc.
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Current energy mix.
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Current energy mix in Thailand.
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Daily demand (in Thailand) and what we can do.

In Thailand, the intensive use of electricity occurs during 9AM – 9PM (on-peak

period).

Can we shift these needs to other time (off-peak period) ? How ? 9



Incentives to decrease the demand.

To control the demand, a higher price is put on the on-peak period for large consumers.

As a result, some of the loads are shifted (if allowed) to the off-peak period for

cheaper operations. How to do this optimally?

This is our objective: to propose a DR model that optimally schedule loads

exploiting the grid price and a renewable integration (solar). 10



Our Optimal Load Scheduling Model



Energy topology

Solar

GridEnergy storage 2 Energy storage 1

Load 2Load 1 Load 3
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Indices

T The number of time slots in a day.

S The number of all storages available in the system.

S̄ The energy source index set {1, · · · ,S} ∪ {grid} comprising of grid and

storages.

AI The set of all interruptable appliances.

AU The set of all uninterruptable appliances.

t The time index which is an integer ranging from 1 to T .

s The storage index which is either an integer ranging from 1 to S or s = grid .

a The appliance index taken either from the set AI or AU .
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Parameters

pt The energy purchasing price from the national grid at the time t.

ra,t The energy required to operate the appliance a during the time slot t.

da The daily demand required from the operation of appliance a.

For interruptable loads, da is the required number operation time slots.

For uninterruptable loads, da is the required number of starts of operations.

ℓa The duration (number of time slots) that is required to complete an oper-

ation of a ∈ AU .

κs The energy capacity of a storage s.

ρs The maximum charging rate of a storage s.

σt The availability of the solar generated energy at the time t.

qa,t The monetary inconvenience cost to opearate the appliance a at the time

t.
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Variables

zgrida,t The binary decision to operate the appliance a at the time t using the energy

from the grid.

zsa,t The binary decision to operate the appliance a at the time t using the energy

from the storage s at time t.

ya,t The binary decision to start the operation of an uninterruptable appliance

a ∈ AU at the time t.

es,gridt The decided amount of energy from the grid that is used for charging the

storage s at time t.

es,solart The decided amount of energy from the solar generator that is used for

charging the storage s at time t.

est The state variable describing the available energy in the storage s at time

t.
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Storage model

Charge-discharge dynamics:

est+1 = est −
∑

a∈AI∪AU

ra,tz
s
a,t + es,gridt + es,solart ,

Capacity constraint: est ≤ κs ,

Discharge constraint:
∑

a∈AI∪AU ra,tz
s
a,t ≤ est ,

Solar availability constraint:
∑

s∈S e
s,solar
t ≤ σt ,

Charging rate constraing: es,gridt , es,solart ≤ ρs .
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Interruptable load model

Required operating hours constraints:
∑

s∈S̄
∑T

t=1 z
s
a,t ≥ da

Single active source constraint:
∑

s∈S̄ z
s
a,t ≤ 1,

Sufficient charge constraint: ra,tz
s
a,t ≤ est .
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Uninterruptable load model

The constraints from the previous page are still required, with the following additional

ones.

No overlapping start constraints: Run-until-completion constraints:

ya,1 + ya,2 + · · ·+ ya,ℓa ≤ 1

ya,2 + ya,3 + · · ·+ ya,ℓa+1 ≤ 1

...

ya,T−ℓa + ya,2 + · · ·+ ya,T−1 ≤ 1

ya,T−ℓa+1 ≤ 1.

zsa,1, · · · , zsa,ℓa ≥ ya,1

zsa,2, · · · , zsa,ℓa+1 ≥ ya,2

...

zsa,T−ℓa+1, · · · , zsa,T ≥ ya,T−ℓa+1.
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Disutility function

We model our disutility function as the actual payment together with the monetized

inconvenience:

C =
∑
a∈A

T∑
t=1

pte
grid
a,t︸ ︷︷ ︸

Grid cost for appliances.

+
∑
s∈S̄

T∑
t=1

pte
s,grid
t︸ ︷︷ ︸

Grid cost for charging.

+β
∑
a∈A

∑
s∈S̄

T∑
t=1

qa,tz
s
a,t︸ ︷︷ ︸

Inconvenience cost.
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Putting everything together.

min
z
grid
a,t ,zsa,t ,ya,t ,e

s,grid
t ,e

s,solar
t ,est

∑
a∈A

T∑
t=1

pt ra,tz
grid
a,t +

∑
s∈S̄

T∑
t=1

pte
s,grid
t + β

∑
a∈A

∑
s∈S̄

T∑
t=1

qa,tz
s
a,t

subject to

For all s ∈ S̄ and t = 1, · · · ,T :
est+1 = est −

∑
a∈AI∪AU ra,tzsa,t + es,gridt + es,solart

est ≤ κs∑
a∈AI∪AU ra,tzsa,t ≤ est∑
s∈S es,solart ≤ σt

es,gridt , es,solart ≤ ρs

For all s ∈ S̄ , a ∈ AI , t = 1, · · · ,T :⌊ ∑
s∈S̄

∑T
t=1 z

s
a,t ≥ da∑

s∈S̄ zsa,t ≤ 1

For all s ∈ S̄ , a ∈ AI ∪ AU , t = 1, · · · ,T :⌊
zgrida,t , zsa,t , ya,t , e

s,grid
t , es,solart , est ≥ 0

zgrida,t , zsa,t , ya,t ∈ {0, 1}.

For all s ∈ S̄, a ∈ AU , t = 1, · · · ,T :

ya,1 + ya,2 + · · ·+ ya,ℓa ≤ 1

ya,2 + ya,3 + · · ·+ ya,ℓa+1 ≤ 1
...

ya,T−ℓa + ya,2 + · · ·+ ya,T−1 ≤ 1

ya,T−ℓa+1 ≤ 1.

zsa,1, · · · , zsa,ℓa ≥ ya,1

zsa,2, · · · , zsa,ℓa+1 ≥ ya,2
...

zsa,T−ℓa+1, · · · , z
s
a,T ≥ ya,T−ℓa+1∑T−ℓa+1

t=1 ya,t = da∑
s∈S̄ zsa,t ≤ 1 19



Features in comparison

Models Model type Advantages Disadvatages

Ours MILP Linear, Simple, Flexible. Not distributed.

TS’12 MINLP Flexible Inexactly solved, Not distributed.

NZL’18 MIQP Community-capable Nonlinear, Not distributed,

SXJ’14 MINLP Direct baseline comparison. Single load type.
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Some simulations



Approach

Since our model is a MILP, we can use literally any solver.

In our simulation, we used Julia Mahtematical Programming package, JuMP, with

Gurobi solver.

Presented here are some simulations of a topology of

• 3 scheulable loads. 2 interruptable and 1 uninterruptable.

• 1 storage unit.

• TOU pricing.
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Simulation results (I)
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Simulation results (I)
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Simulation results (I)
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Simulation results (II)

We can play around with our models.

This time, we incorporate

• 10 loads.

• No grid charging.

• At most 2 loads are active at a time.

• Quadratic inconvenience parameters.
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Simulation results (II)
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Simulation results (II)
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Simulation results (II)
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Conclusions

We have developed a DR load scheduling model that is

• very simple

• linear

• flexible with loads

• flexible with consumer type

• flexible with preferences.
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Thank you for being here. ;)
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