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§ 1. Introduction

Linear algebra focuses on the vector space structure and linear transformations
between two vector spaces. The theory was originally developed from the study of a
linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(1.1)

of m equations and n variables. Letting A = [aij] be the coefficient matirx, x =
(x1, · · · , xn)> be the unknown vector, and b = (b1, · · · , bm)> be the target vector, we
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can reduce (1.1) into the following simple matrix equation

Ax = b. (1.2)

The first question concerning this equation is about its solution. Here, the concepts of
determinant and rank were introduced in order to characterize the solution of (1.2). As
we dive into such concepts, we found that there are even deeper connections between
them and would involve many more concepts and structures like Euclidean space,
subspaces, basis and dimension.

Let us now take a new look at the equation (1.2) from another perspective. We
may view the matrix A as a rule of transforming any (appropriate) vector x into Ax.
That is, it inherits a mapping (or transformation, or operator) T such that T (x) = Ax.
This mapping satisfies the property T (αx + βy) = αT (x) + βT (y) for any possible
inputs x, y and any scalars α, β. This property is called linearity. Hence, the equation
(1.2) can be rephrased equivalently to “find a vector x that transformed (under the
rule of A) in to the target vector b.”

It turns out that the fascinating albegraic structure (called the vector space struc-
ture, or the linear structure) of a Euclidean space can also be found in several other
sets. This allows also for a linear operator to be defined on any pair of sets with linear
structure. In this lecture, we shall be exploring linear algebra of vector spaces and
linear operators which, together with another intensive topology class, will help lay a
good background for our Functional Analysis course.

§ 2. Euclidean spaces and matrix theory

Let us begin with the definition of a Euclidean space.

Definition 2.1. Let n ∈ N. The set Rn := {(x1, · · · , xn)> |xi ∈ R (∀i = 1, 2, · · · , n)}
is called an n-dimensional Euclidean space, whose elements are called n-dimensional
(column) vectors. The prefix “n-dimensional” is usually tacit if no confusion should
arise. Moreover, the notation 0 shall refer to a zero vector 0 ≡ (0, · · · , 0)> of appro-
priate dimension as well as the number 0.

2.1 Matrix equations and ranks

If A is an m×n matrix and b ∈ Rm, then one may seek an unknown vector x ∈ Rn

for which the matrix equation (1.2) holds, i.e. Ax = b. The need to characterize
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the solution of this equation leads to several interesting concepts about a matrix.
Since a matrix equation can be thought of as a linear system, one may perform row
operations to obtain an equivalent linear system (in the sense that there is no loss or
gain of information about the unknowns). An equivalent row-reduced echelon form of
a matrix A can be used to reflect the solution propertis of a matrix equation. Recall
that we write ai∗ and a∗j to denote the ith row (as a row vector) and the jth column
(as a column vector) of A.

Definition 2.2. An m× n matrix U is said to be a row echelon matrix if

a. all rows that consisting entirely of zero are stacked below nonzero rows, and

b. in each nonzero row, the first nonzero entry (called the leading entry) is to the
left of the leading entries below it.

If a row echelon matrix U satisfies the following additional condition

c. all leading entries are 1 and the leading entries are the only nonzero entry in
their rows,

then we say that U is a row reduced echelon matrix.

By the above definition, one may notice for a row echelon matrix that the first
nonzero entries along the rows must lie in the staircase shape and that all the zero
rows (if any) are stacked in the buttom of the matrix. This may be illustrated in the
following:

U =


(∗) ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 (∗) ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 (∗) ∗ ∗ ∗ ∗
0 0 0 0 0 0 (∗) ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 .

The leading entries of each row (entries in the parentheses) are called the pivots of U .
Obviously, the number of pivots is equal to the number of nonzero rows.

Definition 2.3. If the matrix A can be reduced (by row operations) to a row (resp.,
reduced) echelon matrix U , then we say that U is a row echelon form (or REF) (resp.,
row reduced echelon form (or RREF)) of A.
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Since there are many ways to generally perform row operations, one may reach at
different RREF matrix of A. However, there is a nice consistent property across all
the RREFs of A as follows:

Proposition 2.4. All the RREFs of A has the same number of pivots (and hence the
same number of nonzero rows).

This leads us to define the rank of a matrix.

Definition 2.5. The rank of a matrix A, denoted by rank(A), is the number of pivots
in any RREF of A.

The rank of a matrix is a great tool to classify the solvability of a given matrix
equation. The equation Ax = b is said to be consistent if it has at least a solution,
otherwise it is called inconsistent.

Theorem 2.6. Let A be an m × n matrix and b ∈ Rm. Then the following solution
characterizations hold:

1. If rank(A) < rank([A b]), then Ax = b is inconsistent.

2. If rank(A) = rank([A b]) = n, then Ax = b is consistent and it has a unique
solution in Rn.

3. If rank(A) = rank([A b]) < n, then Ax = b is consistent but it has infinitely
many solutions.

It is important to add that in the third case (infinitely many solutions), the solutions
is a translation of a subspace in Rn. We shall state a more precise result in the Rank-
Nullity Theorem below.

2.2 Linear independence, basis, dimension and subspaces

The description of an RREF of a given matrix is not so convenient to work with
in greater details. Hence we may need to look for a friendlier approach. Let us recall
some necessary concepts first.

Definition 2.7. A family {v1, · · · , vk} of vectors in Rn is said to be linearly indepen-
dent if the equation a1v1 + a2v2 + · · ·+ akvk = 0 holds only if a1 = a2 = · · · = ak = 0.
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Put V =

v1 v2 · · · vk

 and A = (a1, · · · , ak)>. If the only solution to V A = 0

is A = 0, then this would imply that {v1, · · · , vk} is linearly independent. Conversely,
if V A = 0 has a nonzero solution, then the family is not linearly independent.

A linear combination of vectors v1, · · · , vk with coefficients λ1, · · · , λk ∈ R is the
summation

∑k
i=1 λivi = λ1v1+λ2v2+ · · ·+λkvk. Then if the family {v1, · · · , vk} is not

linearly independent, that would mean some vector vi is either zero or it can be written
as a nontrivial linear combination of the remaining vectors. An infinite set of vectors
is said to be linearly independent if all of its finite subset is linearly independent.

In Rn, the maximal number of linearly independent vectors is always n. We there-
fore say that the dimension of Rn is n, or symbolically that dim(Rn) = n. The
maximal linearly independent set of vectors in Rn is called the basis of Rn. The most
natural choice of basis is the standard basis, which is the set {e1, e2, · · · , en} where
e1 = (1, 0, · · · , 0)>, e2 = (0, 1, 0, · · · , 0)>, · · · , en = (0, · · · , 0, 1)>. Notice that the
standard vector representation x = (x1, · · · , xn)> ∈ Rn corresponds to the expansion

x = x1e1 + x2e2 + · · ·+ xnen.

Take any subset V ⊆ Rn. Then the span (or linear span) ofX, denoted by span(V ),
is the set of all linear combinations of vectors in V , i.e.

span(X) := {λ1v1 + · · ·+ λkvk |λi ∈ R (∀i = 1, · · · , k)}.

The set span(V ) is closed under addition and scalar multiplication, which means we
have αx + βy ∈ span(V ) whenever x, y ∈ span(V ) and α, β ∈ R. The set span(V
is called the subspace of Rn spanned by V . If {v1, · · · , vm} is a maximal linearly
independent subset in span(V ), we say that span(V ) has dimension m and write
dim(span(V )) = m. On the other hand, if a subset W ⊆ Rn is closed under addition
and scalar multiplication, then it is a subspace of Rn. In this case, W is necessarily
equal to span({w1, · · · , wm}) for some vectors w1, · · · , wm ∈ Rn.

The following examples of subspaces are obtained by regarding a matrix A as a
mapping.

Example 2.8. If A is an m × n matrix, then the set ker(A) := {x ∈ Rn |Ax = 0}
is a subspace of Rn. The subspace ker(A) is called the kernel or the null space of A.
The dimension of ker(A) is usually referred to as the nullity of A, or symbolically as
nullity(A).
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Example 2.9. If A is an m × n matrix, then the set ran(A) := {y ∈ Rm | y =
Ax, ∃x ∈ Rn} is a subspace of Rm. The subspace ran(A) is called the range or the
image of A.

The rank of a matrix A can be stated conveniently in terms of linear independence
as well.

Proposition 2.10. The rank of a matrix A is equal to the maximal number of linearly
independent rows. In particular, dim(ran(A)) = rank(A).

Next, we shall look at the relationship between the rank (dimension of ran(A)) and
the nullity (dimension of ker(A)) of a matrix A.

Theorem 2.11 (Rank-Nullity Theorem). If A is an m × n matrix, then rank(A) +
nullity(A) = n.

Lastly, we shall mention that the solution of the nonhomogeneous matrix equation
Ax = b can be related to that of the homogeneous one Ax = 0 (which is ker(A)). If
Ax = b has a solution x0, then the set of all solutions of Ax = b is x0 + ker(A) =
{x0 + v | v ∈ ker(A)}. If ker(A) is trivial, then this corresponds to the case where
rank(A) = n and x0 + ker(A) reduces to a single point x0.

2.3 Determinant

In this section, we give a special treatment to a square matrix by looking at its
determinant. Most of us know how to calculate the determinant of any 2× 2 or 3× 3
matrices. For larger matrices, it is usually frustrating to calculate the determinant.
Even when we know the determinant of a matrix, it is still not so clear what this value
tells us about a matrix.

The determinant of a square matrix A can be equivalently and formally defined
in many ways. The most used definition is the one that is involved with the column
permutation.

Recall that a permutation on the set {1, · · · , n} is any bijection σ : {1, · · · , n} →
{1, · · · , n}. The shorthand notation (σ(1), σ(2), · · · , σ(n)) is often used to denote the
permutation σ. The sign of a permutation σ, sgn(σ), is the quantity (−1)N(σ) where
N(σ) is the number of inversions in σ. The set of all permutations on {1, · · · , n} will
be denoted with Perm(n).
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Definition 2.12. Let A be an n× n matrix. Then its determinant det(A) is defined
by

det(A) :=
∑

σ∈Perm(n)

(
sgn(A)

n∏
i=1

aiσ(i)

)
.

The above definition of determinant is not so easy to calculate in practice. However
it is simple enough for deducing important properties.

Proposition 2.13. Let A be an n× n matrix. Then the following properties hold:

1. det(A>) = det(A).

2. det(AB) = det(A) det(B).

3. det(λA) = λnA.

The meaning of the determinant can be explained geometrically by viewing the
matrix A as a mapping. Suppose that fi denotes the column vector of A for each
i = 1, · · · , n. Then we get fi = Aei which means the n-dimensional unit box is
transformed into an n-dimensional parallelogram with sides fi (see Figure 2.1). A
careful computation reveals that the volume of this parallelogram equals to | det(A)|.
If we consider a solid S ⊆ Rn, then the determinant | det(A)| gives a scaling constant
of the volume S after being transformed by A to that of S before the transformation.
In other words

| det(A)| = volume of AS
volume of S

.

Now, the sign of det(A) reveals the change of orientation sign of the transformed basis.
For example, if A swaps e1 and e2 of R2, then det(A) = −1 which means the output
changes the right-hand orientation into the left-hand orientation.
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Figure 2.1: The transformation of the standard basis.

If det(A) = 0, then some two basis elements collapse unto a common line. This
collapse implies that the output dimension dim(ran(A)) must be less than n. In fact,
we have the following conclusion.

Proposition 2.14. Let A be an n × n matrix. Then the following statements are
equivalent:

1. det(A) = 0.

2. rank(A) < n.

3. ker(A) is nontrivial.

This proposition has a very crucial consequence: det(A) 6= 0 ⇐⇒ rank(A) = n.
The latter condition implies rank([A b]) = n for all vectors b ∈ Rn. So the matrix
equation Ax = b has a unique solution for any b ∈ Rn. Now, suppose that vi is the
unique solution to Ax = ei for each i = 1, · · · , n and let V be the matrix whose ith
column is vi, then

AV = I.

Now that we know det(A>) = det(A) = n, we may similarly get a unique solution ui
to the equation A>x = ei for each i = 1, · · · , n. If U is the matrix whose ith column
is ui, then

A>U = I = U>A.
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Therefore we get

I = U>A = U>(AV )A = (U>A)V A = V A.

Since AV = V A = I, we conclude that A is invertible and A−1 = V . This procedure
proves the following well-known fact:

Proposition 2.15. A square matrix A is invertible if and only if det(A) 6= 0.

2.4 Linear transformtation

Let us formally introduce a linear transformation between Euclidean spaces once
again.

Definition 2.16. A mapping T : Rn → Rm is called a linear transformation if

T (αx+ βy) = αT (x) + βT (y)

for any x, y ∈ Rn and any α, β ∈ R.

The defining feature of a linear transformation lets understand the big picture by
only knowing the important ones. For instance, if {e1, · · · , en} is the standard basis
for Rn, then T (e1), · · · , T (en) are sufficient to describe the whole T . This is because
any vector x ∈ Rn can be represented as a linear combination of the basis elements
x = x1e1+· · ·+xnen. Therefore T (x) = T (x1e1+· · ·+xnen) = x1T (e1)+· · ·+xnT (en).
If we let AT to be a matrix whose ith column is T (e1), then AT is an m × n matrix
and we have

T (x) = ATx

for all x ∈ Rn. The matrix AT obtained this way is called the matrix representation
of T . Together with the mapping perspective of a matrix, we conclude the following
result which means we do not really distinguish a matrix and a linear transformation
when we are in Euclidean settings.

Proposition 2.17. The linear maps from Rn into Rm is an equivalent object with an
m× n matrix in the following sense:

1. Every m × n matrix A induces a unique linear transformation TA : Rn → Rm

such that TA(x) = Ax for all x ∈ Rn.
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2. Every linear transformation T : Rn → Rm induces a unique m × n matrix AT

such that T (x) = ATx for all x ∈ Rn.

It is possible to define the kernel, range, rank, determinant, and other related
notions for a linear transformation as well. In this case, we consider its matrix rep-
resentation and calculate the correspondings: ker(T ) = ker(AT ), ran(T ) = ran(AT ),
rank(T ) = rank(AT ), det(T ) = det(AT ), etc.

2.5 Eigenvalues, eigenvectors and diagonalization

Eigenvalues and eigenvectors are important concepts with applications in operator
theory, differential equations and also in digital image processing. In this section, those
applications are not in our scope to discuss.

Let T : Rn → Rn be a linear transformtaion with the matrix representation A. We
are interested in finding a nonzero vector v ∈ Rn that does not change the direction
under the transformation T . In terms of its matrix representation, we wish to find a
nonzero vector v ∈ Rn such that

Av = λv (2.1)

for some λ ∈ R. The unknowns in this equation are the vector v and the scalar λ. Due
to the product of λ and v, this equation is nonlinear. If the pair (λ, v) (with v 6= 0)
solves (2.1), we say that v is an eigenvector of A associated with the eigenvalue λ.

Rearranging (2.1) yields (A− λI)v = 0. Observe that if A− λI is invertible, then
the only solution to (2.1) is v = 0 which is not qualified as an eigenvector. Conversely,
if v = 0 is the only solution to (2.1), then A−λI must be invertible (by Theorem 2.6).
Therefore, an eigenvector v corresponds to (2.1) only when A−λI is not invertible, i.e.
det(A − λI) = 0. This equation det(A − λI) = 0 is referred to as the characteristic
polynomial since it resolves into a polonomial of degree n. Since the characteristic
polynomial involves only the scalar unknown λ, it becomes a standard procedure of
determining the eigenvalues of A (or of T ). To find eigenvalues and eigenvectors of A,
one then follow the following steps:

1. Solve the characteristic polynomial det(A− λI) = 0 for eigenvalues λ.

2. For each eigenvalue λ, solve the linear system (A−λI)v = 0 for the eigenvectors v.

Note that there can be the situation where (2.1) has no real eigenvalues (in which
case A does not preserve any directions). However, the characteristic polynomial is
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guaranteed to have n repeatable complex roots. If λ ∈ C solves det(A− λI) = 0, we
still would call λ an eigenvalue of A and similar principle applies to the eigenvectors.
If λ is complex, then there is no doubt v can be complex. However, one can also find
a complex eigenvector as well for a real eigenvalue. This will not be considered here.
Whether A has real or complex eigenvalues is an important property in the study of
differential equations. The following propositions can be useful in confirming the real
eigenvalues.

Proposition 2.18. If A is a triangular matrix, then eigenvalues of A are its diagonal
entries.

Proposition 2.19. If A is a symmetric matrix, then all eigenvectors of A are real.

We also need to address that (A − λI)v = 0 is consistent with infinitely many
solutions. The set of all eigenvectors associated with λ is therefore ker(A−λI), which
is a subspace. This subspace is called the eigenspace of A associated with λ and is
denoted as EA(λ). The following result is helpful in many situations.

Proposition 2.20. If v1 and v2 are eigenvectors of A associated respectively to dif-
ferent eigenvalues λ1 and λ2, then v1 and v2 are linearly independent.

Suppose that an n×n matrix A has n linearly independent eigenvectors v1, · · · , vn
which are associated to (possible repeated) eigenvalues λ1, · · · , λn, respectively. Let
S be the matrix whose ith column is vi and Λ be the diagonal matrix whose diagonal
entries are λ1, · · · , λn, respectively. Then we get A = SΛS−1. Note that S−1 exists
due to the fact that rank(S) = n. Conversely, if A = PDP−1 for some invertible
matrix P and diagonal matrix D (where we would say that A is diagonalizable in the
future), then one have AP = PD which implies that the columns of P are eigenvectors
of A and the diagonal entries of D are eigenvalues whose columns of P are associated
to. In conclusion, we have the following result.

Theorem 2.21. A square matrix A is diagonalizable if and only if A has n independent
eigenvectors. Moreover, if A is diagonalizable, then A = SΛS−1 where S and Λ are
defined as above.

We may obtain the diagonalizability for certain matrices.

Proposition 2.22. If A has n different eigenvalues, then it is diagonalizable.

Proposition 2.23. If A is symmetric, then it is diagonalizable.
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One advantage for a diagonalizable matrix A is that its matrix power is very effi-
ciently computed. That is, if A = SΛS−1, then

Ak = AA · · ·A︸ ︷︷ ︸
k times

= (SΛS−1)(SΛS−1) · · · (SΛS−1)︸ ︷︷ ︸
k times

= SΛkS−1,

where Λk can be calculated by Λk =


λk1 0 · · · 0
0 λk2 · · · 0
... ... . . . ...
0 0 · · · λkn

.
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§ 3. General vector spaces

There are sets which possess the same structures as the Euclidean spaces. Hence,
in this chapter, we introduce the concept of a general vector space which is defined
under the influence of the algebraic structures that the Euclidean spaces have. That
being said, on Rn we have the vector addition p+ q and the scalar multiplication α · p,
for any vectors p, q ∈ Rn and any scalar α ∈ R.

We are not framed only to the real territory. In fact, we will consider both the real
field R and the complex field C. The concept of a vector space to be introduced, will
be over either the real or complex fields.

Definition 3.1. A set V , together with the addition “+” and scalar multiplication “·”,
is said to be a vector space (or a linear space) over the field F (F is either R or C) if V
it is closed under + and · and all the following properties hold for all p, q, r ∈ V , and
all scalars α, β ∈ R:

1. p+ q = q + p (commutativity of addition),

2. (p+ q) + r = p+ (q + r) (associativity of addition),

3. There is a vector 0 ∈ V such that p+0 = p for every p (existence of zero vector),

4. For every vector p there is an associated vector −p ∈ V such that p+ (−p) = 0
(existence of additive inverse),

5. 1 · p = p (rule of multiplication by 1),

6. α(β · p) = (αβ)· (associativity of multiplication by scalars),

7. (α + β)·= α · p+ β · p (first distributive law),

8. α · (p+ q) = α · p+ α · q (second distributive law).

We sometimes write (V,+, ·) to indicate all the algebraic operations of V . In most
cases, we omit the symbol “·” of the scalar multiplication, e.g. α · x instead of αx.

Remark. From the above definition, it is not automatic that −p = (−1) ·p. However,
it follows from the existence of an additive inverse and the first distributive law that
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p+ (−p) = 0 = (1− 1)p = p+ (−1) · p. Therefore, we incidentally get −p = (−1) · p
coincides. We always write q − p = q + (−p) in this case.

In many cases, we do not need to specify the field F that V is defined over. In
some other cases, it might be necessary to indicate. If V is a vector space over R, we
say that V is a real vector space. In the other case, we say that V is a complex vector
space. We also skip the indication that a vector space is real or complex if it is clear
from the context.

Of course, every Euclidean space Rn is the first and obvious example of a vector
space. For other examples, we have to be careful about the definition of the addition
“+” and the scalar multiplication “·”. Let us consider some other important vector
spaces apart from the Euclidean spaces.

Example 3.2.

1. Any subspace of Rn is a real vector space.

2. Cn over the field C is a complex vector space.

3. Cn over the field R is a real vector space.

4. The setMm,n (also denoted with Rm×n) of all m × n real matrices is a vector
space with the usual matrix addition and scalar multiplication.

5. If V and W are vector spaces, then the set F (V,W ) of all mappings from V
into W is a vector space.

6. The set S (R) of all real sequences is a real vector space.

7. The set S (C) of all real sequences is a vector space (real or complex, depending
on the choice of field).

Let us now give the general definition of a (vector) subspace.

Definition 3.3. If W is a vector space which is a subset of another vector space V
with the inherited algebraic operations, then we call W a vector subspace or simply a
subspace of V .

We have a relatively simple way to verify a vector subspace.

Theorem 3.4. If a set W is a subset of a known vector space V , then it is a vector
subspace if αp+ q ∈ W for any p, q ∈ W and α ∈ R.
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Note that if W is not a vector (sub)space, it is often easier to use Definition 3.1
directly. Let us consider some interesting subspaces in the next example.

Example 3.5.

1. The set Sn of all n× n symmetric matrices is a vector space.

2. The set T Un of all n× n diagonal matrices is a vector space.

3. Fix a nonzero matrix X ∈ Mn,n. Then the set C(X) = {A ∈ Mn,n, |AX =
XA} is a vector space.

4. The set C(R,R) of continuous functions from R into itself is a vector space.

5. The set C(C,C) of continuous functions from C into itself is a vector space.

6. The set C1(R,R) of all continuously differentiable functions is a vector space
with usual addition and scalar multiplication.

7. The set P(R,R) of all polynomial functions is a vector space.

The following are examples of a non-subspace.

Example 3.6.

1. The set In of all n× n invertible matrices is not a vector space.

2. The set Pn(R,R) of all polynomial functions of degree n is a not vector space.

Let us demonstrate the gererality of a vector space so that the attached albegraic
operations does not need to be the usual one that we commonly use.

Example 3.7 (Vector space with weird algebra). Let us consider the set R+. If R+ is
equipped with the usual additiona and (scalar) multiplication, then it is not a vector
space. However, if we equip a new (weird) addition ⊕ and multiplication � defined by
x⊕ y = xy and α� x = xα for x, y, α ∈ R, then (R+,⊕,�) is a (real) vector space.

3.1 Basis and dimension

The notion of linear independence, span, basis and dimension can be directly ex-
tended to a general vector space but they can behave much differently.
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Let V be a vector space over the field F and B ⊆ V . Then span(B) is the set of
all finite linear combinations of vectors in B, i.e.

span(B) :=

{
k∑
i=1

αivi | k ∈ N vi ∈ B, αi ∈ F, i = 1, · · · , k

}
.

Notice that B can be an infinite set, but span(B) consists only of finite linear combi-
nations. We may immediately see that span(B) is a vector subspace of V . We say that
B is a linearly independent set if for any finite subset {v1, · · · , vk} ⊆ B, the equation
α1v1 + · · ·+ αkvk = 0 implies αi = 0 for all i = 1, · · · , k.

Definition 3.8. Let V be a vector space. A subset B ⊆ V is a basis of V if it is
linearly independent and span(B) = V .

From the definitions of a basis and a span, it is required that each element of V
must be representable with a finite linear combination of elements from B. Let us see
some examples in simple cases.

Example 3.9.

1. The {e1, · · · , en} is a basis for Rn.

2. The set {1} is a basis for C.

3. The set {e1, · · · , en} is a basis for Cn.

4. The set {E11, E12, · · · , Eij, · · · , Emn}, where Eij is the matrix whose ij-entry is
1 and 0 elsewhere, is a basis forMmn.

5. The set {E11, E22, · · · , Enn} ∪ {Eij +Eji | i = 1, · · · , n, j > i} is a basis for Sn.

Now let us look at the vector spaces like F (R,R) or S (R). It is not obvious to
choose a basis for such vector spaces, nor to see that a basis exists at all. For this, we
cling to the following elegant theorem.

Theorem 3.10. Every vector space has a basis.

Though the theorem gives an affirmative answer to the existence of a basis, it does
not give any information about its construction due to the fact that it is based on the
Zorn’s lemma.

Regardless of the choice of basis, we have the following result which guarantees the
consistence of number of elements in a basis.
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Proposition 3.11. If a vector space V has a basis B consisting of n vectors. Then
any basis of V consists of n vectors.

This leads to the definition of a vector space dimension.

Definition 3.12. A vector space V is said to have a finite dimension with dim(V ) = n
if its basis consists of exactly n vectors. If V does not have a finite dimension, then
we say that it has an infinite dimension and write dim(V ) =∞.

It is important to note that the same vector space can has different dimensionality
depending on the field it is defined over.

Example 3.13.

1. The vector space V = C over the field C has a basis {1}. So dim(C) = 1 when
C is defined over C.

2. The vector space V = C over the field R has a basis {1, i}. So dim(C) = 2 when
C is defined over R.

One might be able to guess that the vector spaces F (R,R) or S (R) that we
cannot find their bases are infinite dimensional. However, not every function space has
complicate basis or even being infinite dimensional. Let us see the next examples.

Example 3.14.

1. The set {xk | k ∈ N} is a basis for P≤n. Therefore, dim(P≤n) =∞.

2. If P≤n(R,R) is a vector space of all polynomials of degrees ≤ n. Then the set
{xk | k ≤ n} is a basis for P≤n(R,R) and hence dim(P≤n(R,R)) = n.

We shall end this section by remarking the existence of a better concept of basis,
called the Schauder basis, which allows an infinite linear combination to be used.
However, it requires the notion of convergence which is not included in this note.
Additionally, not every infinite dimensional vector space admits a Schauder basis.

3.2 Linear operators

It is natural to also extend the notion of linearity of mappings to any vector spaces.
The term “operator” is often preferred over “transformation” in general vector space
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setting. However, any terms operator, transformation, mapping, map, etc. are all
correct.

Definition 3.15. Let V andW be two vector spaces over the same field F. A mapping
T : V → W is called a linear operator if

T (αp+ βq) = αT (p) + βT (q) (3.1)

for all p, q ∈ V and α, β ∈ R.

Let us see some examples of linear operator outside the Euclidean settings.

Example 3.16.

1. Take any matrices Xc×m and Yn×d. Then T :Mm,n →Mc,d defined by

T (A) = XAY (A ∈Mm,n)

is a linear operator.

2. The mapping T :Mm,n →Mn,m defined by

T (A) = A> (A ∈Mm,n)

is a linear operator.

3. The mapping T : C1(R,R)→ C(R,R) defined by

T (f) =
df

dx
(f ∈ D(R,R))

is a linear operator.

4. The shift operator T : S (R)→ S (R) defined by

T ((x1, x2, · · · )) = (0, x1, x2, · · · ) ((x1, x2, · · · ) ∈ S (R))

is a linear operator.

Let us, on the contrary, see a non-linear operator example.

Example 3.17. Consider the linear mapping T : F(R,R)→ F(R,R) defined by

T (f) = f 2 (f ∈ D(R,R))

is not a linear transformation.
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In some occasions, the vector spaces V and W can be of different fields. In partic-
ular, the problem can be raised only when the domain V is defined over the complex
field C. In this case we need to specify over which field the scalars α, β are taken from.
If α and β are taken from R and (3.1) holds, we say that T is a linear operator over R
or that it is R-linear. Let us look at an example.

Example 3.18. The complex conjugation is R-linear but not C-linear.

3.3 Matrix representation

If V and W are finite dimensional vector spaces over the same field F, then we can
represent any linear operator between them by a matrix.

Suppose that dim(V ) = n and B = {b1, · · · , bn} is the chosen basis for V . Then ev-
ery element v of V can be represented uniquely with a linear combination of b1, · · · , bn
as

v = v1b1 + · · ·+ vnbn

with v1, · · · , vn ∈ F. In this case, we adopt the vectorial representation v = (v1, · · · , vn)>B.
Similarly for W , let H = {h1, · · · , hm} be the chosen basis for W and we have the
vectorial representation of any element w ∈ W with respect to the basis H written
as w = (w1, · · · , wm)>H if w = w1h1 + · · · + wmhm with w1, · · · , wm ∈ F. The linear
operator T : V → W then has a matrix representation with respect to the bases B
and H by the column vectors T (b1), · · · , T (bn), each written in the vectorial form with
respect to H. That is, if AT is the matrix given by

AT :=

T (b1) T (b2) · · · T (bn)

 .
Therefore, we get

T (v) = ATv, or more precisely [T (v)]H = [AT ]HB [v]B

where the input and output vectors v and T (v) = Av are written in the bases B
and H, respectively. The matrix AT , or more precisely [AT ]HB , is called the matrix
representation of T with respect to the bases B and H.

Definition 3.19. A linear operator T : V → W is invertible if there exists a unique
linear operator T−1 : W → V such that T−1 ◦ T (v) = v and T ◦ T−1(w) = w for all
v ∈ V and w ∈ W .
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If V and W are both finite dimensional, then T has a matrix representation AT

(with respect to some chosen bases). In this case, we have T is invertible if and only if
AT is an invertible matrix. In fact, all the theory of matrices in the earlier chapter are
all applicable to this the matrix representation. If one of V orW is infinite dimensional,
then the situation can be much more complicated and we will not discuss here.

3.4 Vector space of linear operators and duality

In this final section, we would like to expose the vector space L (V,W ). Suppose
that V and W are vector spaces over the same field F. Then the set L (V,W ),
consisting of all linear operators from V into W , is a vector space.

There is a simplification in finite dimensional setting. Assume that dim(V ) = n
and dim(W ) = m. Let us fix the bases B and H for V and W , respectively. Then the
each T ∈ L (V,W ) has a matrix representation AT inMmn. This is coincidence is so
nice and in fact we have the following property.

Proposition 3.20. There is a vector space isomorphism T 7→ AT between L (V,W )
andMmn.

The isomorphism property says that the two vector spaces are essentially the same.
However the isomorphism is not canonical in the sense that it depends on the choice
of bases on V and W .

There is a case which is extremely useful in functional analysis, namely the (alge-
braic) dual space. Note that this is not the same as the topological dual which more
commonly adopted.

Definition 3.21. Let V be a vector space over the field F. The algebraic dual of V is
the vector space V ∗ = L (V,F).

Of course, if V is finite dimensional with dim(V ) = n, then V ∗ can just be identified
with the set of row vectors F1×n. More importantly, if B = {b1, · · · , bn} is a basis for V ,
then we can create a basisB′ on V ∗ in correspondence toB by lettingB′ = {b∗1, · · · , b∗n}
with each b∗i defined by

b∗i (c1b1 + c2b2 + · · ·+ cnbn) := ci.

This basis B′ is called the dual basis of V ′.
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We end the lecture with a remark for infinite dimensional setting. If dim(V ) =∞
and B is a basis for V , then B′ constructed in the same way is linearly independent
but not necessarily spans V ′. Hence B′ may not be a basis in this case. In particular,
we may view the construction of B′ as an injection of V into V ′ which mnay not be
surjective. We may roughly view this situation that V ′ has a greater infinite dimension
compared to V .

Concluding remarks

In this note, we have discussed the main idea of linear algebra developed upon
the study of linear systems and the corresponding matrix equation. The structure we
found in Euclidean spaces is then extended to an abstract formulation which applies
largely to various settings and turns into a building block of functional analysis. For
more detailed discussion, the reader may consult the textbooks listed in the References
section.
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