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1. What is Linear Algebra all about?

Linear Algebra is a spin-off subject from the study of Linear Systems (or
System of Linear Equations) through generalizations and re-interpretations.

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
amnx1 + · · ·+ amnxn = bm

⇐⇒

[
a11 · · · a1n
...

. . .
...

amn · · · amn

][
x1

...
xn

]
=

[
b1
...

bm

]
⇐⇒ Ax = b.

In the above figure, we may observe a differnt view from a linear system into
a simple matrix equation. This gives a new interpretation; instead of find-
ing x that solves an equation, we find a vector x that is transformed (by a
transformation A) into a new vector b.

In the first half of the course, we focus on the matrix equation Ax = b and
go through different approaches to characterize its solution. The topics include

• Solving Ax = b by Gauss-Jordan method.

• Solutions of Ax = b characterized by rank(A).

• Determinant and its use in the equation Ax = b.

• Vector spaces, subspaces, and dimension. This part is mainly used
to describe the solution set of Ax = b.

• Linear transformation. This part gives a new perspective to the
matrix equation Ax = b.

The second half focuses on more advanced topics that revolves around repre-
sentation of matrices in different bases. One of the most applied basis is the
eigenbasis, which allows useful decomposition for faster matrix computation in
modern GPUs. Moreover, we speak of geometric sides of linear algebra as well
as some of its applications. The second half would cover

• Canonical forms. This allows representation of a matrix directly
in the chosen basis.

• Eigenvalues and associated eigenvectors/eigenspace. Eigenbasis.

• Diagonalization. This is one of the decomposition methods that
allows for fast computation in modern computers.
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• Similar matrices.

• Norms. Orthogonality. Quadratic forms. We explore geometric aspects
of linear algebra here.

• Some applications.

1.1 Matrix algebra: a quick review

Let us give a quick summary of elementary matrix algebra. Recall first that
a matrix is an array of numbers listed as a tableau as follows

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .

This matrix is said to have dimension of m × n, i.e. having m rows and n
columns. The ith row of this matrix is the array[

ai1 ai2 · · · ain
]
,

while the jth column is the array 
a1j
a2j
...

amj

 .

In this course, matrices are usually presented with capital roman alphabets
A,B,C, · · · , etc.

The anotomy of a matrix.
The following illustration depicts the ith row and jth column of a matrix:

ith row→


· · · · · ·
...

... . . . ...
ai1 ai2 · · · ain
...

... . . . ...
· · · · · ·



· · · · a1j · · · ·
· · · · a2j · · · ·
... . . . ... . . . ...
· · amj · ·


↑

jth column
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Let us consider some special classes of matrices now.

Vectors.
A matrix that has a single column (i.e. of dimension n × 1) is called a
column vector. Likewise, a matrix that has a single row (i.e. of dimension
1× n) is called a row vector. In this course, we use the simple term vector
to refer to a column vector. Vectors in this course are usually presented
with lower-case letters like a, b, c, · · · or more often with x, y, u, v, · · · ,etc.
To save up spaces, a column vector x (with n entries) is usually written
also as x = (x1, · · · , xn). Hence, writting

x = (x1, · · · , xn)

is the same as

x =

x1
...
xn

 .

Square matrices.
A square matrix is the one having equal rows and columns. Let A =
[aij]n×n be an n×n square matrix. The diagonal of A refers to the elements
a11, a22, · · · , ann, as shown on the following figure:

a11 · · · · ·
· a22 · · · ·
...

... . . . ...
· · · · · ann


↖

diagonal of A
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A diagonal matrix is a square matrix whose nonzero entries are only
on its diagonal. If the elements along the diagonal are d1, d2, · · · , dn,
then we write diag(d1, · · · , dn) to denote such a diagonal matrix, that
is

diag(d1, · · · , dn) =


d1 0

d2
. . .

0 dn

 .

The identity matrix of dimension n× n is the matrix I given by

I = diag(1, · · · , 1︸ ︷︷ ︸
n times

) =

1 0
. . .

0 1


n×n

A matrix A is said to be an upper triangular matrix if all the en-
tries below its diagonal are all 0. Likewise, it is said to be a
lower triangular matrix if all the entries above its diagonal are all 0.
The following figure illustrates, respectively, an upper triangular ma-
trix and a lower triangular matrix:a11 ∗

. . .
0 ann


a11 0

. . .
∗ ann


We simply say that A is a triangular matrix if it is either an upper or
a lower triangular matrix.
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Let us now turn to algebraic operations of matricecs.

Transposition.
Suppose that A is an m× n matrix given by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 = [aij]m×n.

The transpose of A, written as AT , is an n×m matrix defined by

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

... . . . ...
a1n a2n · · · anm

 = [aji]n×m.

It is clear that (AT )T = A.

A matrix A is said to be symmetric if AT = A. Of course, every symmetric
matrix is a square matrix.

Scalar multiplication.
We can multiply a scalar (a constant) to a matrix in a componentwise
fashion. Let c ∈ R be a scalar and A = [aij]m×n a matrix. Then the
multiplication of c with A, written cA, is defined by

cA = [caij]m×n =


ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n

...
... . . . ...

cam1 cam2 · · · camn

 .

If c = −1, then we write −A = (−1)A.
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Matrix addition and subtraction.
Adding/subtracting two or more matrices, all of them need to have the
same dimension. Let A = [aij]m×n and B = [bij]m×n be any two matrices.
Then A±B is defined componentwise, that is

A±B = [aij ± bij]m×n =


a11 ± b11 a12 ± b12 · · · a1n + b1n
a21 ± b21 a22 ± b22 · · · a2n + b2n

...
... . . . ...

am1 ± bm1 am2 ± b22 · · · amn + bmn

 .

For matrices A,B,C with the same dimension, it is clear that

• A−B = A+ (−B),

• and A±B = B ± A,

• (A±B)T = AT ±BT ,

• (A±B)± C = A± (B ± C) = A±B ± C,

• if c is a scalar, then c(A±B) = cA± cB.

Matrix multiplication.
Now, we consider multiplying two matrices A and B, denoted AB. For
this, we require the number of columns of A and the number of rows of B
to be the same. Let A = [aij]m×n and B = [bij]n×r, then AB = [cij] is the
matrix of dimension m× r where the entry cij is defined by

cij = ai1b1j + ai2b2j + · · ·+ ainbnr.

The following illustration helps understanding the calculation of cij:
· · · · · ·
...

... . . . ...
ai1 ai2 · · · ain
...

... . . . ...
· · · · · ·



· · · · b1j · · · ·
· · · · b2j · · · ·
... . . . ... . . . ...
· · bnj · ·

 =

 ·
· cij · · ·

...

 .

While m and r are not necessarily equal, BA is not even well-defined. For
this reason alone, there is no reason that AB and BA are the same. In
general, even for square matrices A and B, AB and BA are not equal.
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Let A,B,C be two matrices. Then we have

• A(B ± C) = AB ± AC,

• (A±B)C = AC ±BC,

• (AB)C = A(BC) = ABC,

• (AB)T = BTAT ,

• IA = A = AI, (The two I’s can be of different dimension!)

• if c is a scalar, then c(AB) = (cA)B = A(cB),

whenever the above products are well-defined.

Let us practice a little bit to conclude this review session.

Exercise 1.1. Define

A =

[
1 0 −1
0 −1 0

]
, B =

 0 −1 −2
−1 0 0
−2 0 1

 , and C =

 1 1
0 2
−1 0

 .

Find

AB(a) BC(b) ABC(c) AC(d)

BA(e) BTA(f) CTBAT(g) AAT + CTC(h)
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Lab session 1

This lab session is an introduction to the MATLAB application and elementary
syntax. The following topics will be covered:

• defining variables, matrices and vectors,

• accessing variables, entries of a matrix / vector, rows and columns,

• elementary matrix operations and broadcasting.

Assignment of the week.

Let A =

1 3 0 0 −1
2 2 3 −2 2
3 4 9 −2 −2

 and B =


1 0 0
−3 2 2
3 −5 −1
0 −2 1
−1 −1 0

. Find the follow-

ing:

(a) The first and last rows of AB.

(b) The first and last columns of BA.



2. Linear systems and matrix equations

2.1 Transforming a linear system into a matrix equation

Recall that a single-variable equation is said to be linear if it is in the form

ax = b.

This can be easily solved if a ̸= 0 achieving x = b
a
.

Having two variables, say x and y, we need two equations to fix the solution.
In this way, we cannot just choose any x and y independently because they are
linked by the given equations. This system of two equations are said to be a
linear system if it is in the form

a11x+ a12y = b1

a21x+ a22y = b2.

To solve this system, we first eliminate a variable and fix the solution of the
other then substitute back into one of the original equations.

The same principle applies to the case of linear systems with three variables,
x, y and z, as the following form

a11x+ a12y + a13z = b1

a21x+ a22y + a23z = b2

a31x+ a32y + a33z = b3.

To find a solution, we eleminate and substitute variables one by one.

We may now see the pattern: A linear system with n variables and n equa-
tions, namely x1, · · · , xn, takes the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a12x1 + a22x2 + · · ·+ a2nxn = b2
...

...
an1x1 + an2x2 + · · ·+ annxn = bn.

Again, the same elimination-and-substitution strategy still works here, but
with a lot more effort.

9
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Question. Is it necessary to have equal number of variables and equations?

The simple answer to the above question is “no.” We may have n variables
that are linked by m linear equations:

a11x1 + a12x2 + · · ·+ a1nxn =
a12x1 + a22x2 + · · ·+ a2nxn =

...
...

am1x1 + am2x2 + · · ·+ amnxn︸ ︷︷ ︸
n variables

=

b1
b2

bm.

 m equations

The array of values u1, · · · , un is called a solution of the above linear system if
subsituting x1 = u1, · · · , xn = un into the LHS gives RHS.

To review and familiarize linear systems, let us do some preliminary exercises.

Exercise 2.1. Verify whether or not x1 = 3, x2 = −1 a solution of the following
linear system

2x1 − 3x2 = 9

x1 + x2 = 2.

Exercise 2.2. Verify whether or not x1 = 2, x2 = 5 a solution of the following
linear system

x2 − x1 = 3

2x1 − 3x2 = −11.

On the other hand, how do we find a solution of this system?
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Exercise 2.3. Find a solution to the following linear system

x1 + x2 − x3 = 1

2x1 − x2 + x3 = 2

x1 − x2 − x3 = −1.
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Exercise 2.4. Find a solution to the following linear system

3x1 − 2x2 + 2x3 = 1

2x1 − x2 + x3 = 2

x1 − x2 = −1.

Solving the previous systems, we may have observed that our calculation is
dependent on the given equations. This is difficult to proceed when the number
of variables and equations grow larger. Hence we would need a more disciplined
strategy, and this involves changing the system into a matrix equation.

Turning a linear system into a matrix equation.
Given a linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a12x1 + a22x2 + · · ·+ a2nxn = b2
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

we would define

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 , b =


b1
b2
...
bm

 , x =


x1

x2
...
xn

 .
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We call the A the coefficient matrix, b the target vector, and x an unknown
vector. Then we have

Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a12x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


and so the matrix equation

Ax = b

is equivalent to the linear system in question.

Augmented matrix for Ax = b.
To solve Ax = b by hand, it is often helpful to simplify it as an augmented
matrix [A | b], that is

[A | b] =

 a11 · · · a1n
... . . . ...

am1 · · · amn

∣∣∣∣∣∣∣
b1
...
bm

 .

Row operations.
Recall the operations that we did when solving linear systems in the pre-
vious exercises:

• adding an equation into another,

• multiplying a constant to an equation,

• swapping order of equations.

These operations transfer to the matrix equation as (elementary)
row operations, which include

• adding a row into another,

• multiplying a constant to a row,

• swapping rows.



MTH202 Linear Algebra for Engineers | Parin Chaipunya 14

2.2 Analyzing the equation Ax = b

We are not only interested in solving Ax = b, but also to understand it.

The first and foremost behavior we would like to observe about the equation
Ax = b is the number of solutions it has. We may very roughly speak of
consistent systems (those having a solution) and inconsistent systems (those
without a solution), but we want a more detailed description in this course.
This leads us to consider the three cases:

• (well-posed) Ax = b has a unique solution,

• (under-determined) Ax = b has multiple solutions,

• (over-determined) Ax = b has no solution.

To convince that all the three cases could happen, let us do the following
exercise.

Exercise 2.5. Let us observe that:

(a) Let A =

1 0 1
1 0 −1
0 1 0

 and b =

20
1

.

Then Ax = b has a unique solution, which is x∗ = (1, 1, 1).

(b) Let A =

[
1 0 −1
−1 1 0

]
and b =

[
0
1

]
.

Then Ax = b has multiple solutions. For example, x∗ = (0, 1, 0) and
x∗∗ = (1, 2, 1) are both solutions for this system.

(c) Let A =

 1 1
0 2
−1 4

 and b =

21
0

.

Then Ax = b has no solution.
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It is casually understood that

• a well-posed system has equal number of variables and equations,

• an under-determined system has less equations than variables,

• an over-determined system has more equations than variables.

However, to really use this verdict, we need to be sure that the systems is
reduced into its simplest form, i.e. the row echelon form.

Let us do one more exercise to persuade ourselves that we need to reduce a
system before judging it.

Exercise 2.6. Let A =

1 1 2
0 1 1
1 2 3

 and b =

41
5

.

Then we have 3 variables and 3 equations, but multiple solutions. For instance,
x∗ = (2, 0, 1) and x∗∗ = (3, 1, 0) are both solutions of this system. We will come
back to explain this exercise again.

2.2.1. Echelon forms

Row echelon forms.
Consider a matrix M = [mij]m×n. A row of M is called a zero row if it only
consists of 0. A row that is not a zero row is called non-zero row. In a non-
zero row, the first non-zero column in that row is called the leading entry.

Looking at the following matrix

P =


0 0 0 ∗○ · · ·
0 0 · · · · · · 0
0 ∗○ · · · · · · · · ·
0 0 · · · · · · 0

 ,

we conclude that the rows #2 and #4 are zero rows of this matrix, while
he circled entries (∗’s are any nonzero numbers) are the leading entries of
their rows.
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This matrix M is in a row echelon form if the following two conditions are
satisfied:

(1) All zero rows are stacked at the bottom.

(2) In each non-zero row, its leading entry is on the left of all the leading
entries below it.

One may simply observe this visually by stacking zero rows at the bottom
and see that the leading entries are arranged in a staircase manner (see an
example below with P̂ ).

Notice that the above matrix P is not in an echelon form (why?). However,
we may use row operations (swapping rows) to acheive an equivalent matrix
in the following echelon form

P̂ =


0 ∗○ · · · · · · · · ·
0 0 0 ∗○ · · ·
0 0 · · · · · · 0
0 0 · · · · · · 0

 .

Reduced row echelon form.
A matrix M is in a reduced row echelon form if it is in a row echelon form
and the following additional conditions are satisfied:

(3) all leading entries are 1,

(4) all entries above a leading entry are 0.

Exercise 2.7. Determine whether or not the matrices given in the following
are in row echelon and reduced row echelon form.

A =

1 2 0 −1
3 2 0 0
2 4 0 1

(a) B =

0 1 2 0 0 9
0 0 −1 2 −2 5
0 0 1 1 0 0

(b)

C =


1 1 1 0 0 0
0 0 −1 2 −2 5
0 0 0 1 0 0
0 0 0 0 0 0

(c) D =


0 0 1 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

(d)
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Let us note with the following facts.

Fact.

• Every matrix can be turned into a row echelon form using elementary
row operations.

• A single matrix may be turned into several row echelon forms.

• every matrix can be reduced into a unique reduced row echelon form

Exercise 2.8. Use elementary row operations to find row echelon forms of the
matrices from Exercise 2.7.
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2.2.2. Gauss elimination
The aim of the Gauss elimination is to give a systematic procedure to simplify

any matrix into a row echelon form. To do this, we eliminate as many nonzero
entries as possible by the following the steps below:

1. Start with the first nonzero column. Pick a nonzero entry, swap that row
to the top. Set i = 1.

2. Eliminate nonzero entries below the chosen entry from the previous step.

3. Find the next column with nonzero entry after the row i. Pick that
nonzero entry and swap to the row i+ 1.

4. Eliminate all the nonzero entries below the chosen entry from the previous
step.

5. Set i← i+ 1 and repeat Steps 3–5 to complete all columns/rows.

Exercise 2.9. Use Gauss elimination to turn the following matrices into a row
echelon form..

A =

1 2 0 −1
3 2 0 0
2 4 0 1

(a) B =


1 1 0 −1
1 2 1 0
2 4 1 1
3 6 2 1

(b)

C =


0 1 0 −1
1 0 1 0
0 −2 0 1
0 0 0 1

(c) D =


2 0 0 1 2
1 0 1 1 0
0 0 0 0 0
1 0 1 1 0

(d)
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An observation.

• Every square matrix’s row echelon form is a triangular matrix.

2.2.3. Gauss-Jordan elimination
The process of Gauss elimination reduces any given matrix into a row echelon

form. However, if we would like to go further in obtaining a reduced row echelon
form, we need a small extra computation in the Gauss elimination steps. This
modified algorithm is known as the Gauss-Jordan elimination whose steps are
listed as follows:

1. Start with the first nonzero column. Pick a nonzero entry, make it into
1 and swap that row to the top. Set i = 1.

2. Eliminate all nonzero entries in that column except the 1 from the pre-
vious step.

3. Find the next column with nonzero entry after the row i. Pick that
nonzero entry, make it into 1 and swap to the row i+ 1.

4. Eliminate all the nonzero entries in that column except the 1 from the
previous step.

5. Set i← i+ 1 and repeat Steps 3–5 to complete all columns/rows.

Exercise 2.10. Use Gauss-Jordan elimination to obtain the reduced row ech-
elon form of the following matrices.

A =

0 0 0 0 0
0 1 2 3 0
1 0 −1 2 3

(a) B =


−2 1 3 0
2 1 3 0
1 −1 0 0
1 1 1 3

(b)
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2.2.4. Rank and solutions of Ax = b

We regard each row of a matrix as an information. A matrix is then a
collection of information. Some of these information may be obtained from
others and hence does not genuinely a new information. A row echelon form
(or reduced row echelon form) of a matrix is viewed as a collection of genuine
information in the sense that each row cannot be deduced from the remaining
rows, hence no rows can be removed. It is natural that each matrix contains a
certain amount of information, and this amount is fixed.

Nonzero rows of row echelon matrices.
Let A be a given matrix. Then

• all row echelon forms of A has the same number of nonzero rows,

• the reduced row echelon form of A is unique.

With the consistence of nonzero rows in the above observation, one may
define a rank of a matrix to be the number of nonzero rows in a row echelon
form. That is, the rank is the number of genuine information that a matrix
carries.

Rank.
The rank of a matrix A is defined to be the number of nonzero rows of any
row echelon form of A. The rank of A is denoted by rank(A).

Exercise 2.11. Find the rank of the matrices from the previous exercises.
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Recall that a row echelon form of a matrix reveals the minimal true infor-
mation that it carries. Therefore, the number of solutions of a matrix equation
Ax = b can be observed from the row echelon form of the augmented matrix
[A|b]. More precisely, the number of solutions of Ax = b can be concluded from
the rank([A|b]).

Number of solutions through the rank.
Consider the equation Ax = b that corresponds to a system of n variables
and m equations. Then the following conclusion is drawn:

• rank(A) < rank([A|b]) ⇐⇒ Ax = b has no solution;

• rank(A) = rank([A|b]) = n ⇐⇒ Ax = b has a unique solution;

• rank(A) = rank([A|b]) < n ⇐⇒ Ax = b has multiple solutions.

The following flow chart helps the explaining the use of rank to determine
the number of solutions of Ax = b.

Start: Compute rank(A) and rank([A|b])

rank(A) = rank([A|b]) Stop: No solution.

rank(A) = n

Stop: Unique solution.

Stop: Multiple solutions.

No

Yes

No

Yes

Practical aspects.
Consider again the system represented by Ax = b with n variables and m
equations. In practice, to see if rank(A) < rank([A|b]) happens, we do not
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need to compute rank(A) and rank([A|b]) separately.

Consider directly the matrix [A|b]. When reducing [A|b] to one of its row
echelon form [Â|b̂], the Â is always a row echelon form of A. Therefore,
we also obtain a row echelon form of A in the process of obtaining a row
echelon form of [A|b]. Then the following hold:

If a row echelon form of [A|b] consists of a row of the form [0 · · · 0|∗]
(where ∗ ̸= 0), then rank(A) < rank([A|b]) and so Ax = b has no
solution.

Let us rewrite the above flow chart in a more practical perspective.

Start: Find a row echelon form of [A|b].

Contains [0 · · · 0|∗] Stop: No solution.

#nonzero rows = #var.

Stop: Multiple solutions.

Stop: Unique solution.

Yes

No

Yes

No

Exercise 2.12. Determine the number of solutions of the following system:

3x1 + x2 − x3 = 3

x1 − x2 + x3 = 1

2x2 − 2x3 = 0
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Exercise 2.13. Determine the number of solutions of the following system:

2x1 + x2 − x3 = 2

x1 + x2 = 2

x2 + x3 = 0

Exercise 2.14. Determine the number of solutions of the following system:

x1 + x2 + x3 + x4 = 4

2x1 + 3x2 − x3 − x4 = 3

x2 + x3 = 2

2x1 − x2 + x3 − x4 = 1

x1 + x2 − x3 − 2x4 = 0
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Exercise 2.15. Determine the number of solutions of the following system:

x1 + x2 + x3 + x4 = 4

2x1 + 3x2 − x3 − x4 = 3

x2 + x3 = 2

2x1 − x2 + x3 − x4 = 1

x1 + x2 − x3 − x4 = 0
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2.3 Finding solutions of Ax = b.

Now, after being able to determine the number of solutions of Ax = b, it is
time to actually find its solutions (if one exists). The strategy is to simplify
the augmented matrix [A|b] using either Gauss elimination or Gauss-Jordan
elimination, and start analyzing from there.

Exercise 2.16. Solve the following linear system

x1 + x2 − x3 = 6

x1 − x2 + x3 = −2
2x1 − 2x2 + 3x3 = −5

Exercise 2.17. Solve the following linear system

x1 + x2 − x3 − x4 = 0

x1 − x2 + x3 + x4 = 2

x2 − 2x3 = −1
x1 + x2 + 3x3 + 2x4 = 7
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Exercise 2.18. Solve the following linear system

2x1 + x2 − 3x3 = 1

x1 − x2 + x3 = 1

3x1 − 2x3 = 2

Exercise 2.19. Solve the following linear system

x1 + 2x2 − x3 + x4 = 3

2x1 − 2x2 + 2x3 − x5 = 2

2x1 − 3x3 = −1



3. Vector spaces

Let us motivate the study of a vector space, again, from the equation Ax = b
that corresponds to a system of n variables and m equations. Let us begin with
the special case where b = 0.

Multiple solutions... Yes, but how many?
It turns out that when Ax = 0 has more than one solution, it has infinitely
many of them. Let us demonstrate this fact. Let x∗ and x∗∗ both be
solutions of Ax = 0. Take any numbers α and β. Then we get

A(αx∗ + βx∗∗) = αAx∗ + βAx∗∗ = 0.

This means from two different solutions, we can generate infinitely many
more by choosing different values of α and β.

Let S be the set that contains all the solutions of Ax = 0. It turns out that
S has a particular shape to it, e.g. a single dot, a straight line, a flat plane,
a space, etc. We actually observe that all of them are linear shapes. In
fact, we shall see subsequently that a solution set of the equation Ax = 0,
if not empty, is a linear space (or a vector space).

27


	What is Linear Algebra all about?
	Matrix algebra: a quick review

	Linear systems and matrix equations
	Transforming a linear system into a matrix equation
	Analyzing the equation Ax = b
	Echelon forms
	Gauss elimination
	Gauss-Jordan elimination
	Rank and solutions of Ax = b

	Finding solutions of Ax = b.

	Vector spaces

