
Introduction to Optimization

Parin Chaipunya
1 Department of Mathematics / 2 Center of Excellence in Theoretical and Computational Science

King Mongkut’s University of Technology Thonburi

Multi-agent optimization
Mathematical economics
Alexandrov geometry in optimization
Optimal transport

Topic Overview

This introduction shall covers the following topics:

• Introduction to Optimization Modeling

• Unconstrained Optimization

− Principles of Unconstrained Optimization
− Gradient Descent Algorithm and its Variants
− Numerical Examples

• Constrained Optimization

− Principles of Constrained Optimization
− Constrained Optimization Solvers

• Heuristic Approach

1

2

Introduction to Optimization

What is Optimization?

The term OPTIMIZATION is almost self-explained:

“We are interested in choosing the best choice
out of the vastly available options.”

Best choice that produces

• Maximum profit

• Cheapest cost

• Fastest route

• Maximum likelihood

• Least error

• etc.

3

Ingredients

What do we need in an optimization problem?

• Decision variables: x = (x1, x2, · · · , xn) ∈ Rn.

• Objective function: f : Rn → R to be minimized/maximized.

• Constraint: A subset C ⊆ Rn.

A general formulation of an optimization is{
min /max f (x)

s.t. x ∈ C.

Note that miximizing f (x) over C is equivalent to minimizing−f (x) over
C. Hence the optimization theory is developed focusing on minimiza-
tion.

4

Types of solutions.

{
min f (x)

s.t. x ∈ C.

• Global solution [x̄ ∈ Min(f ,C)] : f (x̄) ≤ f (x) for all x ∈ C.

• Local solution [x̄ ∈ LMin(f ,C)] : f (x̄) ≤ f (x) for all x ∈ C that is
near x̄ .

If C = Rn, then there is no constraint, i.e. an Unconstrained optimiza-
tion. In this case, we adopt shorthand notations Min(f) and LMin(f)

for the above notions.

5

Situations


max Profit
s.t. Budget constraints

Resource constraints
Market rules

6

Situations


min Production cost
s.t. Demand constraints

Resource constraints
Infrastructure constriants

7

Situations

{
min Estimation error
s.t. Model requirement constraints

8

Example: Container design

A soft drink manufacturer would like to produce a cylindrical can that
would hold 330 mL of liquid. The manufacturer wants to decide the
dimension of this can so that the material used to make this can is
minimized.

9

Example: Least-square solution

Suppose that we are solving a linear system Ax = b. If the system
has a solution x̄ , then this x̄ is also a minimizer of the function

f (x) =
1
2
‖Ax − b‖2

.

Minimizing this function f is also beneficial when Ax = b has no so-
lution. In such situation, we are looking instead of the least-square
solution, i.e. the point x̄ that minimizes the difference between Ax and
b.

10

Example: Linear regression

Suppose that at each controlled state vectors

x1, · · · , xm ∈ Rn,

we have recorded a corresponding set of observed values

y1, · · · , ym ∈ R

where it is known that yi ∼ xi linearly, i.e.

yi ≈ a>xi + b (∀i = 1, · · · ,m).

Then the linear regression aims at finding the best affine approxima-
tion r(x) = a>x + b to all yi ’s, where a ∈ Rn and b ∈ R.

11

Example: Portfolio optimization (1/2)

A man has $20,000 worth for investment and he is interested to invest
in four different financial instruments as follows.

Choice 1. Buy stock X which is selling at $20 per share.

Choice 2. Purchase a European call options to buy a share of stock X
at $15 in exactly 6 months time. The options are selling for
$10.

Choice 3. Raise more funds for investment by selling the European
call options above.

Choice 4. Purchase a 6-month riskless zero-coupon bonds having a
face value of $100 at the price of $90.

12

Example: Portfolio optimization (2/2)

This man has determined that there are three equally likely scenarios
that may occur to the stock X, namely

Scenario 1. Stock X sells for $20 per share in 6 months.

Scenario 2. Stock X sells for $40 per share in 6 months.

Scenario 3. Stock X sells for $12 per share in 6 months.

Due to the risks involved, there is a margin on the total number of
European call options that you can sell, in this case set to 500. Also,
a person is limited to the maximum of 5000 calls.

The aim of this man is to make an investment plan for the available
choices.

13

14

Tools

Tools

Vectors and Matrices

15

Vectors

Since optimization problems usually depends on more than one vari-
able, we capture all the variables that we need to decide upon into a
single array called a vector.

A vector x of n entries (or components) is represented by

x =


x1

x2
...

xn

 = (x1, x2, · · · , xn).

We write x ∈ Rn to inform that x is a vector of n entries.

In the case n = 1, a vector x ∈ R1 = R contains just a single number,
which we will call a scalar.

16

Vector algebras

We may do some algebras with vectors.

Let x , y ∈ Rn with x = (x1, · · · , xn) and y = (y1, · · · , yn), then their
addition and subtraction are defined componentwise:

x ± y =


x1
...

xn

±


y1
...

yn

 =


x1 ± y1

...
xn ± yn

 .

We can also multiply a scalar α ∈ R to a vector x ∈ Rn by broadcasting
α over each entries of x :

αx = α


x1
...

xn

 =


αx1

...
αxn

 .

17

Lengths and distances

The length of a given vector x ∈ Rn can be computed by the (Eu-
clidean) norm ‖·‖:

‖x‖ =
√

x2
1 + · · ·+ x2

n =

(
n∑

i=1

x2
i

) 1
2

.

The distance between two vectors x , y ∈ Rn can be calculated by the
norm of their difference:

‖x − y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 =

(
n∑

i=1

(xi − yi)
2

) 1
2

.

18

Matrices

As a vector can be regarded as a 1-D array of numbers, we define a
matrix to be a 2-D array of numbers.

A matrix A of dimension m×n, having m rows and n columns, is usually
represented by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 = [aij]i=1,··· ,m
j=1,··· ,n

= [aij]m×n.

We write A ∈ Rm×n as a shorthand for A is an m × n matrix.

We can view a vector x ∈ Rn as a matrix of dimension n × 1.

19

Matrix algebra

The addition and subtraction of two matrices with the same dimension
can be done in a componentwise fashion, and the scalar multiplication
to a matrix can be done similarly by broadcasting.

To multiply two matrices A and B, we require the width of A to match
with the height of B. If A ∈ Rm×n and B ∈ Rn×r , then their product
AB = [cij]m×r is an m × r matrix whose entry cij is defined by

cij =
n∑

k=1

aik bkj = ai1b1j + ai2b2j + · · ·+ ainbnj .

In general, AB 6= BA even when both are defined (i.e. m = n = r).

20

Classes of matrices

A matrix A ∈ Rm×n is called:

• square if m = n.

• symmetric if A> = A.

• identity if it is square and aij = 0 if i 6= j and aij = 1 if i = j . An
identity matrix is usually denoted by I.

• invertible if it is square and there is another matrix, denoted by A−1,
in which AA−1 = A−1A = I. A matrix A is invertible ⇐⇒ det(A) 6=
01.

• positive semidefinite (A � 0) if it is symmetric and x>Ax ≥ 0 for all
x ∈ Rn.

• positive definite (A � 0) if it is symmetric and x>Ax > 0 for all
nonzero x ∈ Rn.

1We shall skip the definition of det(A) as it is complicated for n × n matrices

21

Positivity criteria

It is not easy to check the positivity of a given matrix A. However, we
have the following more practical approach.

A symmetric matrix A is

• positive semidefinite ⇐⇒ all eigenvalues of A are ≥ 0, and

• positive definite ⇐⇒ all eigenvalues of A are > 0.

22

Tools

Vector calculus

23

Multivariate functions

A function in this lecture would accepts not only a single variable x ,
but on several variables x1, x2, · · · , xn.

It is convenient to deliver all the variables above in a single package
x = (x1, x2, · · · , xn) as a vector in Rn.

The functions we use throughout our discussion will generally be of
the form f (x) = f (x1, x2, · · · , xn).

24

First-order derivatives

The derivative depicts the rate of change / slope of the function at a
given point x in certain directions.

The partial derivative of f w.r.t. the variable xi is denoted by ∂f
∂xi

.

The gradient of f is then the vector containing all of its partial deriva-
tives, i.e.

∇f (x) =

(
∂f
∂x1

(x), · · · , ∂f
∂xn

(x)

)
=


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 .

25

Second-order derivatives

The second-order partial derivatives of f are all the partial derivatives
∂2f
∂xj∂xi

=
∂

∂xj

∂f
∂xi

for i , j = 1, · · · ,n.

Since the second-order partial derivatives have double indices, it is
natural to pack them in a matrix, rather than a vector. Such a matrix is
called the Hession of f :

∇2f (x) =



∂2f
∂2x1

(x) ∂2f
∂x2x1

(x) · · · ∂nf
∂xnx1

(x)

∂2f
∂x1∂x2

(x) ∂2f
∂2x2

(x) · · · ∂2f
∂xnx2

(x)

...
...

. . .
...

∂2f
∂x1∂xn

(x) ∂2f
∂x2xn

(x) · · · ∂2f
∂2xn

(x)


.

If all the second-order partial derivatives of f are continuous, then
∂2f
∂xj∂xi

=
∂2f
∂xi∂xj

. This implies that ∇2f (x) is a symmetric matrix.
26

27

Principles of Unconstrained
Optimization

Optimality conditions

All principles of optimization relies on calculus.

Necessity: x̄ ∈ LMin(f) =⇒ ∇f (x̄) = 0.

Sufficiency: [∇f (x̄) = 0 ∧∇2f (x̄) � 0] =⇒ x̄ ∈ LMin(f).

To find a point x̄ ∈ LMin(f):
Filter: Solve for critical points ∇f (x̄) = 0.
Confirm: Check the positivity ∇2f (x̄) � 0 at the critical points.

28

Simplification: Convex case

Convex functions are those functions f whose Hessian satisfies∇2f (x) �
0 for all x ∈ Rn.

When f is convex, then

LMin(f) = Min(f)

and also
x̄ ∈ Min(f) ⇐⇒ ∇f (x̄) = 0.

29

Quadratic functions

A quadratic function f (x) of n variables takes the form

f (x) = x>Ax + b>x + c (∀x ∈ Rn)

where A ∈ Rn×n, b ∈ Rn, and c ∈ R are given coefficients.

Minimizing a quadratic function is simple as we may derive that

∇f (x) = (A + A>)x + b and ∇2f (x) = A + A>.

Especially when A is symmetric, we get

∇f (x) = 2Ax + b and ∇2f (x) = 2A.

Note that the Hessian of a quadratic function is always a constant.

30

Polynomial fitting

We demonstrate minimizing a quadratic function through a practical
problem of fitting a polynomial to a collection of data.

Suppose we have m samples with yi ∼ xi . We shall try to fit a polyno-
mial of degree n to this set of samples, i.e. find the coefficients ai in
which

yi ≈ anxn
i + an−1xn−1

i + · · ·+ a1xi + a0,

31

Some algorithms

General rules

The following is the general scheme for minimizing a function f .

GENERAL SEARCH SCHEME.

Initialization:
Pick a start point x0 ∈ Rn.
Set k ← 0.
While: ∇f (xk) 6= 0;
[line search] determine dk ∈ Rn and tk > 0.
[update] xk+1 ← xk + tk dk .
[update] k ← k + 1.

Note 1. There is no ‘one size fits all’ sort of algorithms.
Note 2. Convergence of algorithms is usually guaranteed under strong
assumptions.
Note 3. In practice, not too many people cares about the above facts!

32

Line search rules

After a descent direction dk is decided, the step size tk can then be
determined by several rule:

• Constant step-size rule. Take some t̄ > 0 and let tk := t̄ for all
k ∈ N.

• Vanishing step-size rule. Choose a priori a decreasing positive
real sequence (tk) in which tk → 0.

• Exact linesearch rule. For each k ∈ N, take tk = argmint>0 f (xk +

tdk).
• Armijo’s backtracking linesearch rule. Choose a priori an accept-

able rate of descent α ∈ (0,1), an initial step length s > 0, and a
decremental ratio β ∈ (0,1). For each k ∈ N, define tk := β is (here
β is raised to the power i), where i ∈ N ∪ {0} is the least integer
satisfying

f (xk + sβ idk) ≤ f (xk) + αsβ i〈∇f (xk),dk 〉.

33

Gradient descent methods

Gradient descent methods refer to the class of algorithms where

dk = −∇f (xk),

i.e. the steepest descent direction. The performance varies upon the
line search rules as well as the behavior of the objective function itself.

Also note that in nonconvex cases, the algorithm is only capable of
approximating a critical point.

The performance of Gradient descent methods is known to be related
to the condition number which is the ratio of the maximum and mini-
mum eigenvalues of the Hessians.

34

Gradeint descent methods

GRADIENT DESCENT METHOD.

Initialization:
Pick a start point x0 ∈ Rn.
Set k ← 0.
While: ∇f (xk) 6= 0;
[line search] determine tk > 0.
[update] xk+1 ← xk − tk∇f (xk).
[update] k ← k + 1.

35

Newton’s method

The Newton’s method was orignally designed to solve a nonlinear
equation

F (x̄) = 0.

With F = ∇f , the Newton’s method reduces to the problem of finding
a critical point ∇f (x̄) = 0.

The Newton’s method refer to the case dk = −[∇2f (xk)]−1∇f (xk) and
tk = 1.

36

Newton’s methods

NEWTON’S METHOD.

Initialization:
Pick a start point x0 ∈ Rn.
Set k ← 0.
While: ∇f (xk) 6= 0;
[update] xk+1 ← xk − [∇2f (xk)]−1∇f (xk).
[update] k ← k + 1.

In the first update step, one needs to calculate [∇2f (xk)]−1 which can
be expensive. Hence, we may solve the following linear system instead
to get xk+1:

∇2f (xk)(xk+1 − xk) = −∇f (xk).

The expensive computation of ∇2f (xk) is further treated in the so-
called quasi-Newton methods.

37

Conjugate gradient methods

Conjugate gradient methods take advantage of the geometric feature
of the objective function, so that large condition number does not affect
the convergence.

Another great feature about the conjugate gradient method is that it is
guaranteed for to converge within n steps for quadratic functions of n
variables with A � 0.

38

Conjugate gradient methods

For simplicity, we let

f (x) =
1
2

x>Ax − b>x .

Then we get ∇f (x) = Ax − b = r(x) and ∇2f (x) = A.

39

Conjugate gradient methods

CONJUGATE GRADIENT ALGORITHM.

Initialization:
Pick a start point x0 ∈ Rn.
Set r0 ← Ax0 − b, d0 ← −r0, k ← 0.
While: r k 6= 0;

Update:
tk ← − (r k)>dk

(dk)>Adk .

xk+1 ← xk + tk dk .

r k+1 ← Axk+1 − b.

βk+1 ← (r k+1)>Adk

(dk)>Adk .

dk+1 ← −r k+1 + βk+1dk .

k ← k + 1.

Note. The Conjugate gradient method actually works with general con-
vex functions, with some modifications to the scheme.

40

Some pros and cons.

Gradient descent methods.
Pros: Simple and light. Requires only the gradient information.
Cons: Can be slow to the level of being useless. Relies very largely
on the condition numbers.

Newton’s method.
Pros: Fast, when it works.
Cons: Expensive to compute. Convergence is difficult to analyze and
usually works locally.

Conjugate gradient methods.
Pros: Light weight and relatively fast.
Cons: Very sensitive that sometimes it behaves differently from the
theory. Convergence behavior is strange for non-quadratic functions.

41

Quasi-Newton methods

The idea of Quasi-Newton methods is to replace the exact computa-
tion of the Hessian ∇2f (xk) with an approximation Bk , which will be
updated at each iterate. There are various approaches, but the most
famous one would be the one of Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and its original predecessor Davidon-Fletcher-Powell (DFP).

42

BFGS method

BFGS METHOD.

Initialization:
Pick a start point x0 ∈ Rn and an initial Hessian approximation H0.
k ← 0.
While: ∇f (xk) 6= 0;

Update:
dk ← −Hk∇f (xk).

Get tk > 0 from the Wolfe’s linesearch rule.2

xk+1 ← xk + tk dk .

sk ← xk+1 − xk . yk ← ∇f (xk+1)−∇f (xk). ρk ← 1
(yk)>sk .

Hk+1 ← (I − ρk sk (yk)>)Hk (I − ρk yk (sk)>) + ρk sk (sk)>.

k ← k + 1.
2In practice, people prefer to use the fixed step tk = 1.

43

Wolfe’s linesearch rule

One may approach the Wolfe’s linesearch rule as in Armijo’s back-
tracking with an additional parameter 0 < α < γ < 1 curvature condi-
tion to be satisfied:

∇f (xk + sβ idk)>dk ≥ γ∇f (xk)>dk .

44

Again, no perfect method.

BFGS method improves the Newton’s method by replacing the exact
Hessian computation with a more simplified update on its approxima-
tion Hk .

However the computation of Hk is not totally cheap and in fact quite
tense in storage and evaluation, in the order O(n2).

45

46

Conclusion and remarks

Conclusion and remarks

• Optimality (local) is calculated through first- and second-order deriva-
tives.

• Global optimality is only guaranteed for convex functions.

• Algorithms are not always convergent, and not perfect for all prob-
lems.

• If convergent, they tend to go to critical points.

47

Thank you.

48

	Introduction to Optimization
	Tools
	Vectors and Matrices
	Vector calculus

	Principles of Unconstrained Optimization
	Some algorithms
	Conclusion and remarks

