Fixed Point Theory T: H-> H [T = prox, T = I-Atf] Optimization Problems f: H -> J-00, + 00] $= \mathbb{P}$ L Find = T(x) L minimize & over 2 Set-Valued Analysis • A: H = 2^H (A = of) L[Find red s.t. $\exists \bar{v} \in A(\bar{z}), \langle \bar{v}, y - \bar{z} \rangle \ge 0$ (Hyed)

Convex functions Let H be a Hilbert opace. Del A functions Pide Trans 10
Def A function $f: H \rightarrow [-\infty, +\infty]$ is convex if $f((1-\lambda) \times +\lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$
for all $\overline{\mathcal{I}} \in]0,1[$ and $\overline{x}, y \in H$. Examples affine finebiens
quadratic functions with $A \succeq 0$. nonomodify $\chi \mapsto \ \chi\ $ $\chi \mapsto \ \chi\ ^2$ $\chi \mapsto d_{\mathcal{L}}(\chi)$, $\mathcal{C} \subseteq \mathcal{H}$ is nonempty
We are interested in the class $T_{(H)} := \{f: H \rightarrow] -\infty, +\infty]$ which is convex, lsc, and proper }
Note If f:11->[-00,+10] is loc-and ratisfies =xeH: f(x)=-00,
then f is not propor. Def. The (Fouchel) subdifferential of f:H > [-00,+00] is the set-walned
map $\partial f: H = 2^{H}$ given by $\partial f(x) := \left\{ v \in H \mid f(y) \ge f(x) + \langle v, y - x \rangle (\forall y \in H) \right\}$
for keH.
· · · · · · · · · · · · · · · · · · ·

Theorem If $f \in T_{o}(H)$, then the set $\int x \in H \left[\partial f(x) \neq \phi \right]$ is dense
in dom $f := \{ x \in H \mid f(x) \in IR \}$
Moreover, $\partial f(x) \neq \phi$ whenever $x \in \text{mt cont}(f)$,
where $cont(f) := \{ x \in H \mid f \text{ is continuous at } x \}$
<u>Prop</u> If $f \in T_0(H)$, then $cont(f) = int(dom f)$.
· · · · · · · · · · · · · · · · · · ·
Theorem
$(N+S OC)$ If $f \in T_0(H)$, then
x minimizes f over H (=> OE OF(x).
(N+S OC) If fET, (14) and CSH is nonempty, closed + coners then
< minimpes four e (=> JUE 2f(x) {U, y-x} >0 (by=e).
Converity Monotonicaly.
FETC(H) => OF is maximally monotone, i.e.
UEDF(y)
and gr(of) is not a subset of gr(A)
for any A:H-2" that is monotone.
$\left(\operatorname{gr}(A) = \left(\varkappa(u) \in \operatorname{Hr}(H) \mid u \in A(\varkappa) \right) \right)$
Def Let CCH be a closed + convex nonempty set, then the metric projection
onto c is Pc: H > c defined for any reft by
$P_{\mathcal{L}}(x) = \operatorname{angmin}_{\mathcal{H}} \ x - y\ = \operatorname{angmin}_{\mathcal{H}} \ x - y\ ^2$

Prop Let CSH be a nonempty closed convex set and rect.
Then z = P2(x) (=> (x-z, y-z) <0 (Hyed).
r-z t z t y z y z t y z t
(eg. A= of) If A is single-valued, then
$\chi = P_{\mathcal{C}}(I - A) \times \langle = \rangle \langle (I - A) \times - \times , y - \times \rangle \leq 0 (Hy \mathcal{C})$
on operator T $L \Rightarrow (x - A(x) - x, y - x) \leq 0$ (by ed)
A(x) =
$If A = \nabla f , then$ $F = \nabla f , then$
$x = P_2(I - of)(x) \Leftrightarrow \langle Pf(x), y - x \rangle \gg (\forall y \in d)$
(=) ~ minimizes f over C.
· · · · · · · · · · · · · · · · · · ·
Thm. If A: H = 2 ^H is movelenally monotone, then for any 7:0, the
mapping Jx: H-> H given by
$\overline{\nabla}_{\lambda}(x) := (1+\lambda A)^{-1}(x)$
is well-difined and firmly nonexpansive. Moreover, we get
$J_{\lambda}(x) = x \iff 0 \in A(x),$ Try to relate $x = P_{\lambda}(J_{\lambda}(x))$ with aptimization!
$T \in A = \partial \in (f \in T_{o}(H))$, then
$ \begin{aligned} \mathcal{J}_{\lambda}(x) &= \operatorname{argmin}_{\lambda \in H} \left[f(y) + \frac{1}{2\lambda} \ y - x\ ^{2} \right] &= \operatorname{prox}_{\lambda} (x), \\ & y \in H \end{aligned} $

$min f = \Sigma f_i$
Probability Ingredients.
Ingredients. Ingredients. $(-\Omega, \Sigma) = 500000000000000000000000000000000000$
$-\Omega = \int (12,3)4,5 \int_{0}^{1}$
$\Sigma = 2^{2} = \left\{ \begin{array}{c} 11^{2} & 11^{2} \\ 11^{2} & 11^{3} \\ 11^{3} & 11^{3} \\ \end{array} \right\}$
Def We say that a property A occurs almost swely if
$P(f x \in \Omega property A holds at x]) = 1$. The support of a measure P is defined to be the smallest closed set
$S \subseteq \Omega$ such that $P(S) = 1$
When there is a sequence $\{\varepsilon_{1}, \varepsilon_{2},\} \subseteq \Omega$ such that $\sum_{i=1}^{n} P(\varepsilon_{i}) = 1$, then P is said to be discrete.

In several case, we can find a function $f: \mathcal{I} \to [0,\infty)$ such that $P(A) = \int f(\omega) d\omega$ (for any $A \in \mathbb{Z}$). Such a Function is called the proba density function. Random vorrieble / vectors. X'(B) EZ for all BEB. $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if $\chi'((-\infty, \alpha]) \in \Sigma$ brall of no-algebra on R (Barel). $\mathbb{P}_{X}: \mathbb{B}_{\mathrm{IR}} \to \mathbb{R}$ $\mathbb{P}_{X}(\mathcal{U}) = \mathbb{P}(X^{-1}(\mathcal{U}))$ abstract numples number can be calculated can be measured Asbability distribution of X. but no measure! with P. $\mathbb{E} X = \int_{-\infty} X(w) dP(w) = \int_{-\infty} X(w) f(w) dw$ The expectation of X is IF X is discrete, then $\mathbb{E} X = \tilde{Z} P(\sigma_i) X(\sigma_i)$ Stochastic optimizations min $f(x) + \mathbb{E}_{2}[Q(x,z)]$ s future cost if the scenario & occurs. st. constraints QCX., E) may be interpreted as the optimal cast. occurs from the decision x $\xi = (q, T, w, h)$ min g(y) st. Tran + Wly) = h.

e e e Ex	You have \$20,000 to to invest in
	Choice 1 : Buy a stock X at \$20/ shore.
	<u>Ohoice</u> 2: Buy an option nous at \$10 for the right of buying the stock X at \$15 after 1 year.
	Scenarios: the price of the stock X after 1 year is \$p.
	First stage: how much to put into choice $1 \\ \leftarrow z_1$ — u — Choice $2 \\ \leftarrow z_2$
· · · ·	Second shape: how many options to exercise $\leftarrow y_1$ $\longrightarrow abondon \leftarrow y_2$,
	hoice 1 x(p - 20)
	$\frac{1}{10} - 10y_2 + (-10 + (p - 15))y_1$
	$= -10(y_1 + y_2) + (p - 15)y_1$
· · · ·	max Ep Q (z, p) z optimal value for
	· · · · · · · · · · · · · · · · · · ·
	$\frac{max}{y_{1}y_{2}} = \frac{10 \left[y_{1} + y_{2} \right]}{4 \left(\rho - 15 \right) y_{1}}$
	$s.t, y_1+y_2 = \kappa_2$
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·