Optimization Problems

of: $H \rightarrow J-\infty,+\infty]$ L minimize f over C

Fixed Point Theory

$$
T: H \rightarrow H \quad\left(T=p_{r o x}, T=I-\lambda+f\right)
$$

L Find $\bar{x}=T(\bar{x})$.

Set-Valued Analysis

- $A: H \rightarrow 2^{H} \quad(A=\partial f)$

$$
L\left[\begin{array}{l}
\text { Find } \bar{x} e d \text { sit. } \\
\exists \bar{v} \in A(\bar{x}),\langle\bar{v}, y-\bar{x}\rangle \geqslant 0 \quad(\forall y \in d)
\end{array}\right.
$$

Convex functions
Let H be a thilbert space.
Def A function $f: H \rightarrow[-\infty,+\infty]$ is convex if

$$
f(c(-\lambda) x+\lambda y) \leqslant(1-\lambda) f(x)+\lambda f(y)
$$

for all $x \in] 0,1[$ and $x, y \in H$.
Examples : affine functions.
quadratic functions with $A=0$.
nonsmoth $x \mapsto\|x\|$

$$
\left[\begin{array}{lr}
x \mapsto\|x\|^{2} & d S H \text { is nonempty } \\
x \mapsto d_{c}(x) & \text { elosed + comex }
\end{array}\right]
$$

We are interested in the class $\left.\Pi_{0}(H):=\{f: H \rightarrow]-\infty,+\infty\right]$ which is convex, ls, and proper?

$$
\exists x \in H: f(x) \in \mathbb{R} .
$$

Note If $f: H \rightarrow[-\infty,+\infty]$ is eec. and satisfies $\exists x \in H: f(x)=-\infty$, then f is not proper.

Def. The (Fouchel) subdifferential of $f: H \rightarrow[-\infty,+\infty]$ is the set-raluad map $\partial f: H \rightarrow 2^{H}$ given by

$$
\partial f(x):=\{v \in H \mid f(y) \geqslant f(x)+\langle v, y-x\rangle \quad(\forall y \in H)\}
$$

for $k \in H$

Theorem If $f \in \Gamma_{0}(H)$, then the set $\{x \in H \mid \partial f(x) \neq \phi\}$ is dense in $\operatorname{dom} f:=\{x \in H \mid f(x) \in \mathbb{R}\}$.
Moreover, $\partial f(x) \neq \phi$ whenever $x \in \operatorname{int} \operatorname{cont}(f)$, where cont $(f):=\{x \in H \mid f$ is contimions at $x\}$.
Prop. If $f \in T_{0}(H)$, then $\operatorname{cont}(f)=\operatorname{int}(\operatorname{dom} f)$.

Therein
($N+S$ OC) If $f \in \Gamma_{0}(H)$, then

$$
x \text { minimizes } f \text { over } H \Leftrightarrow O \in \partial F(x) \text {. }
$$

$(N+S O C)$ If $f \in \Gamma_{S}(M)$ and $d S H$ is nomemply, closed + cones, then x minimizes f over $d \Leftrightarrow \exists v \in \partial f(x):\langle v, y-x\rangle \geqslant 0(\forall y \in C)$.

Convexity \leftrightarrow Monotonicity:
$f \in T_{G}(H) \Rightarrow \partial f$ is maximally monotone, ie.

$$
\forall x, y \in \operatorname{dom}(\partial f), \forall\left\{\begin{array}{l}
u \in \partial f(x) \\
v \in \partial f(y)
\end{array}:\langle u-v, x-y\rangle \geqslant 0 .\right.
$$

and $\operatorname{gr}(\Delta f)$ is sot a subset of $\operatorname{gr}(A)$ for any $A: H \rightarrow 2^{H}$ that is monotone.

$$
(g r(A)=\{(x, u) \in H \times H \mid \quad u \in A(x)\})
$$

Def Let $d \subseteq H$ be a closed + convex nonempty set, then the metric projection onto d is $P_{C}: H \rightarrow C$ defined for any $x \in H$ by

$$
P_{C}(x)=\underset{y \in C}{\operatorname{argmin}}\|x-y\|:=\underset{y \in C}{\operatorname{argmin}}\|x-y\|^{2}
$$

Prop Let CSH be a nonempty closed convex set and $x \in H$. Then $z=P_{C}(x) \Leftrightarrow\{x-z, y-z\rangle \leqslant 0 \quad(\forall y \in C)$

(eg. $A=0 f$)
If A is single-valued, then

$$
\begin{aligned}
x=\underbrace{P_{C}(I-A) x}_{\text {an operator } T} & \Leftrightarrow\langle(I-A) x-x, y-x\rangle \leqslant 0 \quad(\forall y \in C) \\
& \Leftrightarrow\langle x-A(x)-x, y-x\rangle \leqslant 0 \quad(\forall y \in C) \\
& \Leftrightarrow\langle A(x), y-x\rangle \geqslant 0 \quad(\forall y \in C) \\
& \Leftrightarrow x \text { solves } v I(A, C)
\end{aligned}
$$

$$
\begin{aligned}
x=P_{C}(I-\nabla f)(x) & \Leftrightarrow\langle\nabla f(x), y-x\rangle \geqslant 0 \quad(\forall y \in C) \\
& \Leftrightarrow x \text { minimizes f over } C .
\end{aligned}
$$

Thm If $A: H \rightarrow 2^{H}$ is maximally monotone, then for any $\lambda>0$, the mapping $J_{\lambda}: H \rightarrow H$ given by

$$
V_{\lambda}(x):=(I+\lambda A)^{-1}(x)
$$

is well-difined and firmly nonexpansive. Moreover, we get

$$
J_{x}(x)=x \Longleftrightarrow 0 \in A(x) \text {. Try to relate }
$$

$x=P_{C}\left(J_{\lambda}\left(x_{i}\right)\right.$ with aptimingation!
If $A=\partial f\left(f \in J_{0}(H)\right)$, then

$$
J_{\lambda}(x)=\underset{y \in H}{\operatorname{argmin}}\left[f(y)+\frac{1}{2 \lambda}\|y-x\|^{2}\right]=\operatorname{prox}_{\lambda}(x) .
$$

$$
\min f=\sum f_{i}
$$

Probability
Ingredients.
fir - Ω - sample space.

- $\Sigma \subseteq 2^{\Omega}$ - space of events : σ-algebra.

$$
\}(\Omega, \Sigma) \text { a measurable } \begin{array}{r}
\text { space } .
\end{array}
$$

- $P: \Sigma \rightarrow[0,1]$ - probability measure.

$$
\text { requirement :\{ }\left\{\begin{array}{l}
P(\Omega)=1 \\
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right), A_{i} \in \sum
\end{array}\right.
$$

Ex. Dice rolling.

$$
\begin{aligned}
& \Omega=\{1,2,3,4,5,6\} \\
& \Sigma=2^{\Omega}=\left\{\begin{array}{l}
\{1\},\{2\}, \ldots,\{6\} \\
\{1,2\},\{1,3\}, \ldots \\
\phi
\end{array}\right\} \\
& P(A)=\frac{\# A}{6}
\end{aligned}
$$

Def We say that a property A occurs almost sively if

$$
P(\{x \in \Omega \mid \text { property } A \text { holds at } x\})=1
$$

The support of a measiose P is defined to be the smallest closed set $S \subseteq \Omega$ such that $P(S)=1$

When there is a sequence $\left\{\sigma_{1}, \sigma_{2}, \ldots\right\} \subseteq \Omega$ such that $\sum_{i=1}^{\infty} P\left(\sigma_{i}\right)-1$, then P is said to be digonete.

In several cause, we can find a function $f: \Omega \rightarrow[0, \infty)$ such that

$$
\left.P(A)=\int_{A} \frac{f(w) d w}{G d P} \text { (for any } A \in \Sigma\right)
$$

Such a function is called the prob density function.

Random variable/veetors.
$X^{-1}(B) \in \Sigma$ for all $B \in B_{\text {e }}$ $X: \Omega \rightarrow \mathbb{R}^{n}$ is called a random variable if $X^{-1}((-\infty, a]) \in \sum$ for all $a \in \mathbb{R}$.

\uparrow can be measured with P.

$$
\mathbb{N}^{\mathbb{R}} \quad P_{x}: \mathcal{B}_{\mathbb{R}}^{a \sigma-a \operatorname{lge}} \rightarrow \mathbb{R}
$$

number

$$
\begin{aligned}
& C^{a \sigma \text {-algebra on } \mathbb{R}(\text { Bowel) }} \\
& B_{\mathbb{R}} \rightarrow \mathbb{R} \\
& P_{x}(U)=P\left(X^{-1}(U)\right)
\end{aligned}
$$

can be calculated but no measure!

Probability distribution of X.

The expectation of X is $\mathbb{E} X=\int_{\Omega} X(\omega) d P(\omega)=\int_{\Omega} X(\omega) f(\omega) d \omega$.
If X is discrete, then

$$
\mathbb{E} X=\sum_{i=1}^{\infty} p\left(\sigma_{i}\right) X\left(\sigma_{i}\right)
$$

Stochastic Optimization
cost at the present time

$$
\min _{x} \hat{f(x)}+\mathbb{E}_{\xi}[Q(x, \xi)]
$$

st. Constraints.
© future cost if the scenario \& occurs.
$Q(x, \xi)$ may be interpreted as the optimal cast.

$$
\begin{array}{r}
\text { occurs from the decision } x \\
\qquad \begin{aligned}
& \min g(y) \\
& y \\
& \text { st } T(x)
\end{aligned}+W(y)=h
\end{array}
$$

Ex. You have $\$ 20,00$ to to invest in
Choice 1 : Buy a stock X at $\$ 20 /$ share.
Choice 2: Buy an option now at $\$ 10$ for the right of buying the stock X at $\$ 15$ after 1 year.

Scenarios: the price of the stock X after 1 year is $\$ p$.

First stage: how must to put into choice 1. $\leftarrow x_{1}$

Second stage: how many options to exercise. $\leftarrow y_{1}$

Choice $1 \quad x(p-20)$
Choice 2

$$
\begin{aligned}
& -10 y_{2}+(-10+(p-15)) y_{1} \\
& \quad=-10\left(y_{1}+y_{2}\right)+(p-15) y_{1}
\end{aligned}
$$

$$
\max _{x} \underbrace{\mathbb{E}_{p} Q(x, p)}_{\text {Optimal value for }}
$$

$$
\begin{array}{ll}
\max _{y_{1} y_{2}} & -10\left(y_{1}+y_{2}\right)+(p-15) y_{1} \\
\text { s.t, } & y_{1}+y_{2}=x_{2}
\end{array}
$$

