Discrete random variables - Expectation and variance

MTH382 Probability Theory for Finance and Actuarial Science

Parin Chaipunya KMUTT

^LMathematics @ Faculty of Science

This lecture is bears the most important tools in probability, which are expectation and variance of a r.v. Expectation could be thought of as the *mean* (or *average*) of all possible values produced by a random variable.

Expectation

Definition

Always consider a probability space (Ω, \mathcal{F}, P) .

Definition 1. Let *X* be a discrete r.v. with values in $E \subset \mathbb{R}$ with the condition that

Π

either
$$E \subset \mathbb{R}_+$$
 or $\sum_{x \in E} |x| P(X = x) < \infty.$ (1)

Then the **expectation** (or **expected value**) of *X*, denoted with $\mathbb{E}X$ (or $\mathbb{E}[X]$), is defined by

$$EX := \sum_{x \in E} x P(X = x).$$

Remark.

The condition (1) is only to gurantee that the summation in the definition of $\mathbb{E}X$ is well-defined. Note that an expectation could takes an infinite value.

We begin with the simplest examples.

Example 2. Compute $\mathbb{E}X$ where X represents the following situtations.

(1) X is the result of tossing a fair dice.

(2) X is the result of tossing an unfair dice with

 $P(\bigcirc) = 0.2, P(\bigcirc) = 0.1, P(\bigcirc) = 0.2, P(\bigcirc) = 0.1, P(\bigcirc) = 0.3, P(\bigcirc) = 0.1.$

Now we move to a more complicate example.

Example 3. Consider S_n which is the number of heads appearing in tossing a coin n times. Calculate the expected value $\mathbb{E}[S_n]$. The next example shows that even a r.v. *X* has finite values, its expectation could be infinite.

Example 4.

Let X be a r.v. taking values in $E = \mathbb{N}$ with the distribution

$$P(X=n)=\frac{1}{cn^2}$$

for each $n \in \mathbb{N}$, where $c = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

(a) Show that *P* is a probability measure.

(b) Show that $\mathbb{E}X = +\infty$

Expectation

Properties of $\ensuremath{\mathbb{E}}$

Properties of $\ensuremath{\mathbb{E}}$

Theorem 5. The following properties hold.

(a) The expectation is linear, i.e.

$$\mathbb{E}[\lambda_1 X_1 + \cdots + \lambda_n X_n] = \lambda_1 \mathbb{E} X_1 + \ldots + \lambda_n \mathbb{E} X_n$$

for any $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, where $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are discrete r.v.s.

(b) The expectation is monotone, i.e. for any discrete r.v.s $X_1, X_2 : \Omega \to \mathbb{R}$ such that $X_1 \leq X_2$, then

$$\mathbb{E}X_1 \leq \mathbb{E}X_2.$$

(c) The expectation satisfies the triangle inequality, i.e.

 $|\mathbb{E}X| \leq \mathbb{E} |X|$

Variance

Definition

Take a discrete r.v. X taking values in $E \subset \mathbb{R}$. We say that it is **integrable** if $\mathbb{E}[|X|] < \infty$ and **square integrable** if $\mathbb{E}[X^2] < \infty$.

Definition 6.

Let X be a discrete r.v. with values in $E \subset \mathbb{R}$ which is square integrable, and let $\mu := \mathbb{E}X$. The **variance** of X is defined by

Var[X] :=
$$\mathbb{E}[(X - \mu)^2] = \sum_{x \in E} (x - \mu)^2 P(X = x).$$

A lot of times, we use the notation $\sigma^2 := \operatorname{Var}[X]$.

The variance Var[X] describes how much the values of X could be *away* from its average μ .

Proposition 7. The variance also has the following expression

 $\mathsf{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}X)^2,$

or in other words,

 $\sigma^2 = \mathbb{E}[X^2] - \mu^2.$

Examples

Example 8.

Consider two r.v.s X and Y, where we express them with their distribution functions

$$\pi_X(x) := \begin{cases} 0.5 & \text{if } x = 10, \\ 0.5 & \text{if } x = -10, \\ 0 & \text{otherwise,} \end{cases} \quad \pi_Y(y) := \begin{cases} 1 & \text{if } y = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Compare and explain between their expectations $\mathbb{E}X$ and $\mathbb{E}Y$ and also their variances σ_X^2 and σ_Y^2 .

Example 9.

Compute the variances of r.v.s in the previous examples.

Variance

Propoerties of Var

Theorem 10. Let X be a discrete r.v. and $a, b \in \mathbb{R}$, then

 $\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X].$

Theorem 11. If X_1, \ldots, X_n are independent discrete r.v.s, then

$$\operatorname{Var}[X_1 + \cdots + X_n] = \operatorname{Var}[X_1] + \cdots + \operatorname{Var}[X_n].$$

Example 12. Consider repeatedly tossing a weighted coin with P(H) = p and P(T) = 1 - p, with $p \in (0, 1)$. Find the expected value and variance of S_n representing the number of heads appearing in the *n* tosses. Moments

Moments

We have studied $\mathbb{E}X$ and $\operatorname{Var}[X]$, which is related to $\mathbb{E}[X^2]$. One might be curious about $\mathbb{E}[X^k]$ for larger $k \in \mathbb{N}$ and in fact, some of them has special meanings. For examples, $\mathbb{E}[X^3]$ is the **skewness** (the lack of symmetry) and $\mathbb{E}[X^4]$ is the **kurtosis** (the fatness of the tail).

In fact, $\mathbb{E}[X^k]$ is called the k^{th} moment of X.

One could also consider the **moment generating function** $M_X(s) := \mathbb{E}[e^{sX}]$, since this function captures *all* the moments of *X* from the fact that

$$\left.\frac{d^k M_X}{ds^k}\right|_{s=0} = \mathbb{E}[X^k]$$

for all $k \in \mathbb{N}$.

Example 13. Consider the case of a single coin tossing with a r.v. X being 1 when H occurs and 0 when T occurs. Then

$$\pi_X(x) = \begin{cases} 0.5, & \text{if } x = 0, 1, \\ 0, & \text{otherwise.} \end{cases}$$

- Calculate the moment generating function M_X .
- Show that $M'_X = \mathbb{E}X$ and $M''_X = \mathbb{E}[X^2]$.

Example 14. Suppose that X is a discrete r.v. whose moment generating function is

$$M_X(s) = \frac{1}{3}(1 + e^s + e^{2s}).$$

What is the expectation and variance of *X* ?

Takeaways

- \mathbb{E} is the **mean** and **Var** is the **variance** of the data encoded by a given random variable.
- $\circ~\mathbb{E}$ is linear but Var is not.
- Var is additive only for independent random variables.
- The moment generating function is capable of describes all the moments of any r.v. and it could be useful in computing the variance.

