Discrete random variables — Independent and identically distributed sequences

MTH382 Probability Theory for Finance and Actuarial Science

Parin Chaipunya KMUTT

^LMathematics @ Faculty of Science

In this lecture, we consider a multiple variables and discuss their independence. The ultimate goal here is to be able to investigate a sequence of independent and identically distributed sequence. Independent random variables

Always consider a probability space (Ω, \mathcal{F}, P) .

Definition 1. Let E_1 and E_2 are two countable sets. Two discrete r.v.s $X_1 : \Omega \to E_1$ and $X_2 : \Omega \to E_2$ are called **independent** if

$$P(X_1 = x_1, X_2 = x_2) := P(\{X_1 = x_1\} \cap \{X_2 = x_2\}) = P(X_1 = x_1)P(X_2 = x_2),$$

for all $x_1 \in E_1$ and all $x_2 \in E_2$.

This concept of independence generalizes naturally to any finite case.

Definition 2. Let (Ω, \mathcal{F}) be a measurable space, E_1, \ldots, E_n are two countable sets. For each $i = 1, \ldots, n$, let $X_i : \Omega \to E_i$ be r.v.s. We say that X_1, \ldots, X_n are **independent** if

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) ... P(X_n = x_n),$$

for all $x_i \in X_i$ and $i = 1, \ldots, n$.

Example

Consider the switching network shown in Figure 1.1, where there are two switches, s_1 and s_2 . Each switch has two states, namely, Working and Failed. The switches s_1 and s_2 have failure rates of 0.02 and 0.05, respectively.

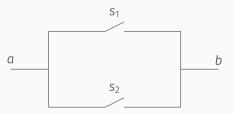


Figure 1.1: Switching network with two switches.

In order to have the electricity flows between points *a* and *b*, at least one of the two switches must be in the Working state. What is the probability that no electricity flows between *a* and *b* ?

Example

Consider the switching network shown in Figure 1.2, where there are four switches, s_1 , s_2 , s_3 , s_4 . Each switch can be in one of the two positions, On or Off, with a probability of $\frac{1}{2}$ of being in the On position.

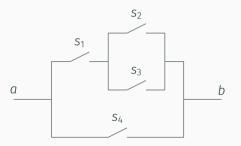


Figure 1.2: Switching network with four switches.

What is the probability that electricity flows between a and b?

Independent and identically distributed sequence

Definition 3.

A sequence (X_n) of discrete r.v.s is said to be **independent** if any finite collection X_{i_1}, \dots, X_{i_r} extracted from this sequence are independent.

Definition

Definition 4. If X is a discrete r.v., then its **distribution function** is $\pi_X : X \to [0, 1]$ with

 $\pi_X(x) := P(X = x).$

This π_X is also called the **probability law** or simply the **law** of *X*. It represents the induced probability on the image of *X*.

Definition 5.

A sequence (X_n) of discreate r.v.s is said to be **independent and identically distributed** (briefly **i.i.d.**) if

- \circ all X_n 's take their values in the same set E,
- the sequence (X_n) is independent as of Definition 3,
- the probability distribution functions of all X_n 's are the same.

Natural examples of i.i.d. sequences are those related to infinite random experiments.

Example 6.

Consider tossing a single coin repeatedly and indefinitely. If X_n is the r.v. representing the outcome of the n^{th} toss, prove that the sequence (X_n) is i.i.d.

Example 7.

Consider again an indefinite coin tossing where (X_n) is an i.i.d. sequence of r.v. and for each $n \in \mathbb{N}$, X_n represents the outcome of the n^{th} toss (0 representing T and 1 representing H). Now, for each $n \in \mathbb{N}$, we consider an r.v. $S_n : \Omega \to \mathbb{R}$ defined by

$$S_n = X_1 + \cdots + X_n$$
.

This r.v. is the number of heads appearing during the first *n* tosses.

- (a) Show that (S_n) is not i.i.d.
- (b) Compute the probability of the event $S_n = k$ for $k = \{1, ..., n\}$.

Takeaways

- Independence of random variables is stronger than that of events It includes independence of all the events caused by different values of the involved random variables.
- An i.i.d. sequence is heavily used in **stochastic processes** that describes a sequence of random experiments or sequence of events that occur over time.

