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Overview

The goal of this lecture is to intuitively introduce a random variable and formally
introduce a discrete random variable. We shall go through the definition and a
series of examples to get a better understanding of the concept.
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Definition



What is the main idea of a random variable ?

� A random variable is a representation of an uncertain event, often in a
numerical manner.

� Eventhough a random variable is not really a variable, it is usually treated as if
it is a variable, but its value depends on a random event.

� We actually have used the idea of a random variable before, without realizing
or calling it a random variable.
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Definition of a random variable.

Always let (Ω;F) be a measurable space.

Definition 1.
A function X : Ω! E, with a countable set E, is called a discrete random variable
(or briefly a discrete r.v.) on (Ω;F) if the preimage

fX = xg := X�1(fxg) = f! 2 Ω j X(!) = xg

is an event in F, for all x 2 E. N

Remark.
We do not need a probability measure to discuss random variables, since this is
just a tool to represent events in a simpler manner.
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Some comments

� The countable set E could be any abstract set. In many applications (including
dice rolling or counting heads in coin tosses), it is natural to set E = Z (or more
commonly, E = N) which has an advantage of being computable. In some other
applications (like head-or-tail or card faces), there is no natural way to
represent an event numerically. One would see that having E = Z (or E = N)
has a huge benefit that allows the study of expectation.

� The discrete (or later, continuous) nature of a random variable is usually
understood directly from the context (the countability of E) and the term
random variable (or r.v.) is usually used with its prefix omitted when there is
no possible confusion. N
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Dice rolling

Example 2.
Consider rolling a dice. The sample space is then Ω = f ; ; ; ; ; g and
the �-field of all events is the power set F = 2Ω. We
define X : Ω! f1; 2; 3; 4; 5; 6g, representing numerically an outcome, by

X( ) = 1; X( ) = 2; X( ) = 3; X( ) = 4; X( ) = 5; X( ) = 6: (1)

Then X is a r.v. N
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Dice rolling II

In the following example, we still consider rolling a dice but we are only able to
distinguish odd and even faces. One would see that the same r.v. function is no
longer available as a r.v.

Example 3.
Consider Ω = f ; ; ; ; ; g and F = f?;Ω; f ; ; g; f ; ; gg. Then
the function X : Ω! f1; 2; 3; 4; 5; 6g defined as (1) is not a r.v. For instance, one
could notice that X�1(1) = f g 62 F. N
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Coin tossing

The next is an example of a r.v. that does not take numerical values.

Example 4.
Consider tossing a coin twice, so that Ω = f(H;H); (H; T); (T;H); (T; T)g and F = 2Ω.
Set E = fH; Tg and define X1; X2 : Ω! E by

X1((H;H)) = X1((H; T)) = H;
X1((T;H)) = X1((T; T)) = T;
X2((H;H)) = X2((T;H)) = H;
X2((H; T)) = X2((T; T)) = T:

We could see that X1 and X2 are r.v.s representing the outcomes of the first and
second toss, respectively. These r.v.s are examples of those in which numerical
representation is not natural. N 7



Coin tossing (II)

Under some circumstances, it also makes sense to assign numerical values to
these non-numerical outcomes. We shall see this in the following example.

Example 5.
Consider tossing a coin twice and let Ω be the sample space with F = 2Ω being
its �-field of events. We shall now consider a r.v. X that represents the number of
H occuring in the two tosses. This X is defined by

X((T; T)) = 0; X((H; T)) = X((T;H)) = 1; X((H;H)) = 2:

With this notion, we could consider probabilities like

P(X = 0) = P(fX = 0g) = P(f! 2 Ω j X(!) = 0g) = P(f(T; T)g) = 1
4 : N

8



Operations on random variables



Operations on random variables.

It is quite natural to ask which operations preserves the resulting function to be
again a random variable.

We start with the ones that work for r.v.s taking numerical values.

Proposition 6.
(a) If X; Y : Ω! R are discrete r.v.s, then Z := X+ Y a discrete r.v.
(b) If X : Ω! R is a discrete r.v. and � 2 R, is Z := �X a discrete r.v.
(c) If X1; : : : ; Xn : Ω! R are discrete r.v.s and �1; : : : ; �n 2 R, then

Z := �1X1 + � � �+ �nXn

is a discrete r.v.
(d) If X and Y are discrete r.v.s, is Z := XY a discrete r.v.
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Examples of why we need to operate on r.v.s.

� If X1 and X2 represents the outcomes of the first and second dice rollings,
then X1 + X2 states the sum of the two faces.

� A person invested in n assets. She invested �i unit in the ith asset. If Xi
represents the value of the ith asset (assumed to be a discrete r.v. due to the
uncertainty of the market), then

Z := �1X1 + � � �+ �nXn

represents her worth of the investment.
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Operations on random variables.

Here, we present the ones that do not require the r.v.s to take values in R.

Proposition 7.
Let E and F be two countable sets. If X : Ω! E is a r.v. and f : E ! F,
then Y := f(X) = f � X is also a r.v.

Proposition 8.
Let E1 and E2 be two countable sets, and X1 : Ω! E1 and X2 : Ω! E2 are two r.v.s.
Then X := (X1; X2) : Ω! E1 � E2 is also a r.v.
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Example of coupled r.v.s.

� Drawing a card of a standard deck has an outcome that could be represented
by two discrete r.v.s. Let X : Ω! f|;};~;�g be the r.v. representing the suit,
and Y : Ω! f2; : : : ; 10; J;Q; K;Ag the ranks. Then to represent a card, we need
both X and Y coupled into a new r.v. Z = (X; Y).
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Takeaways



Takeaways

� Random variables are used to represent events of interests.
� They are functions but treated more as variables.
� Several operations can be used to generate new random variables.
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Bon journée!
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