A formal introduction to probability spaces

MTH382 Probability Theory for Finance and Actuarial Science

Parin Chaipunya KMUTT

^LMathematics @ Faculty of Science

In this class, we shall study a formal definition of a **probability space** using the language of **measure theory**.

It is with this level of precision that allows the whole mathematical theory of probability to be developed.

The σ -filed of events.

Probability measures

Some properties

The σ -filed of events.

- An outcome is a result of a random phenomena or a random experiment. The set of all possible outcomes ω is called the sample space Ω.
- An **event** is a subset of Ω that represents a situation in which one could observe and that a **probability** could be assigned. (More precise definition is coming...)

• An outcome ω is said to **realize** an event A if $\omega \in A$.

Definition 1.

Let Ω be a nonempty set. A family $\mathcal{F} \subset 2^{\Omega}$ is called a σ -field (also called a σ -algebra) over Ω if the following conditions are satisfied:

 $\begin{array}{ll} (\sigma 1) & \Omega \in \mathcal{F}. \\ (\sigma 2) & \text{If } A \in \mathcal{F}, \, \text{then } A^{\complement} := \Omega \setminus A \in \mathcal{F}. \\ (\sigma 3) & \text{If } A_i \in \mathcal{F} \, \text{for each } i \in \mathbb{N}, \, \text{then } \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}. \end{array}$

The pair (Ω, \mathcal{F}) is called a **measurable space**, the set Ω is called the **sample space**, and elements of \mathcal{F} are called **events**.

Proposition 2.

Let (Ω, \mathfrak{F}) be a measurable space. Then the following conditions hold:

- (a) $\emptyset \in \mathcal{F}$.
- (b) If $A_i \in \mathcal{F}$ for each $i \in \mathbb{N}$, then $\bigcap_{i=1}^{\infty} \in \mathcal{F}$.
- (c) If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$ and $A \cap B \in \mathcal{F}$.
- (d) If $A, B \in \mathcal{F}$, then $A \setminus B \in \mathcal{F}$.

Some immediate examples [Verify each one.]

Example 3.

Let $\boldsymbol{\Omega}$ be a nonempty set.

𝔅₀ = {Ø, Ω} is the smallest σ-field over Ω, known as the trivial σ-field.
 𝔅_∞ = 2^Ω is the largest σ-field over Ω, known as the gross σ-field.

Here, \mathcal{F}_0 and \mathcal{F}_∞ are the **weakest** and the **strongest** σ -fields, respectively, in the sense that

$$\mathcal{F}_0 \subset \mathcal{F} \subset \mathcal{F}_\infty$$

for any σ -field \mathcal{F} over Ω .

• Let $\Omega = \{a, b, c, d\}$. Then $\mathcal{F} = \{\emptyset, \{a, b\}, \{c, d\}, \Omega\}$ is a σ -field over Ω .

• For any Ω and $A \subset \Omega$, the set $\{ \varnothing, A, A^{\complement}, \Omega \}$ is a σ -field.

• For any Ω and a nonempty subset $A \subset \Omega$, the family $\{\emptyset, A, \Omega\}$ is **not** a σ -field.

 \circ Consider an interval $\Omega = (0, 1]$. Then

Proposition 4.

Let Ω be a nonempty set and let

$$\mathcal{A} = \left\{ A \subset \Omega \mid \text{either } A \text{ or } A^{\complement} \text{ is countable}
ight\}.$$

Then A is a σ -field over Ω .

Some more sophisticated examples [Left as exercises.]

Proposition 5 (Trace σ -field).

Let (Ω, \mathfrak{F}) be a measurable space and $E \subset \Omega$ is a given nonempty set. Then

 $\mathcal{F}_E := \{E \cap A \mid A \in \mathcal{F}\}$

is a σ -field over Ω .

Proposition 6 (Pre-image σ -field).

Let (Ω', \mathcal{F}') be a measurable space, Ω a nonempty set, and $f: \Omega \to \Omega'$ a given map. Then

$$\mathcal{F}_f := \{ f^{-1}(A') \mid A' \in \mathcal{F}' \}$$

is a $\sigma\text{-field}.$ Then is a $\sigma\text{-field}$ over Ω

Example 7. Suppose that $\Omega' = \{0, 1, 2\}$ be equipped with a σ -field $\mathcal{F}' = 2^{\Omega}$. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ and define $f : \Omega \to \Omega'$ by

$$f((H, H)) = 2$$
, $f((H, T)) = f((T, H)) = 1$, $f((T, T)) = 0$.

Calculate the σ -field \mathcal{F}_{f} .

Generated σ -field [Prove the propositions.]

Fix a set Ω . In practice, the σ -field \mathcal{F} over Ω is usually not given, but rather be constructed from some initial information — the family $\mathcal{E} \subset 2^{\Omega}$ of **base events**. We have already seen this earlier in many of our examples in the previous classes.

Proposition 8.

Suppose that Ω is a nonempty set and $\mathcal{E} \subset 2^{\Omega}$ be a nonempty family of subsets of Ω . Then there exists a unique smallest σ -field over Ω containing \mathcal{E} , defined by

$$\sigma(\mathcal{E}) := \bigcap \left\{ \mathcal{F} \subset 2^{\Omega} \, | \, \mathcal{F} \supset \mathcal{E} \text{ is a } \sigma \text{-field over } \Omega. \right\}$$
(1)

The proof of the above proposition is based on the following fact.

Proposition 9.

Let Ω be a nonempty set and $\{\mathcal{F}_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of σ -fields over Ω . Then $\mathcal{F} := \bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ is also a σ -field over Ω .

Definition 10.

Suppose that Ω is nonempty and let $\mathcal{E} \subset 2^{\Omega}$ be nonempty family containing **base** events. Then the collection $\sigma(\mathcal{E})$, as defined in (1), is called the σ -field generated by \mathcal{E} . On the other hand, if \mathcal{F} is a σ -field over Ω such that $\mathcal{F} = \sigma(\mathcal{E})$ for some collection of sets $\mathcal{E} \subset 2^{\Omega}$, then \mathcal{F} is said to be generated by \mathcal{E} .

It is unfortunate that $\sigma(\mathcal{E})$ has no explicit or constructive formula. Therefore it is usually not possible to make a descriptive list of its elements. One should have seen from the earlier examples that even in the case where Ω is finite, the enumeration of $\sigma(\mathcal{E})$ is a tough job. One might think that $\sigma(\mathcal{E})$ could be constructed, for any \mathcal{E} , by adding to the family \mathcal{E} all possible countable unions of its members and complements. But this it not true, even when we repeat such a process uncountably. **Example 11.** Let Ω be a finite set, and $\mathcal{E} = \{\{\omega\} \mid \omega \in \Omega\}$. Then $\sigma(\mathcal{E}) = 2^{\Omega}$.

Example 12. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{E} = \{\{a, b\}, \{b, c\}\}$. Then $\sigma(\mathcal{E}) = 2^{\Omega}$.

More generally, one could come up with the following result.

Proposition 13.

Let Ω be given, and Ω is partitioned into A_1, A_2, \ldots, A_N (which means $\Omega = A_1 \uplus \cdots \uplus A_N$). Then $\#\sigma(\{A_1, \ldots, A_N\}) = 2^N$.

Probability measures

Definition 14.

Let (Ω, \mathcal{F}) be a measurable space. A **probability measure** (or simply a **probability**) on (Ω, \mathcal{F}) is a function $P : \mathcal{F} \to [0, 1]$ such that the following conditions are satisfied:

(P1) $P(\Omega) = 1.$

(P2) For any sequence of events $(A_i)_{i \in \mathbb{N}}$ in \mathcal{E} such that $A_i \cap A_j = \emptyset$ for all $i, j \in \mathbb{N}$ with $i \neq j$, it holds

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i).$$

Whenever *P* is a probability on (Ω, \mathcal{F}) , the tripple (Ω, \mathcal{F}, P) is called a **probability** space.

Example 15 (SOA Exam P Sample Question). You are given that $P(A \cup B) = 0.7$ and $P(A \cup B^{\complement}) = 0.9$. Calculate P(A).

Example 16 (SOA Exam P Sample Question).

In modeling the number of claims filed by an individual under an automobile policy during a three-year period, an actuary makes the simplifying assumption that for all integers $n \ge 0$, p(n + 1) = 0.2p(n) where p(n) represents the probability that the policyholder files n claims during the period. Calculate the probability that a policyholder files more than one claim. In the unit interval [0, 1], we put $\mathcal{I} := \{(a, b) \mid 0 \le a < b \le 1\}$ to be the set of all open subintervals of [0, 1].

Consider $\Omega = [0, 1]$. The Borel σ -field, denoted by \mathcal{B} (or $\mathcal{B}([0, 1])$), is defined by

 $\mathcal{B} = \sigma(\mathcal{I}).$

Then there exists a unique probability measure $P : \mathcal{B} \rightarrow [0, 1]$ such that

P(I) = b - a,.

for any subinterval $I \subset [0, 1]$ with endpoints $a \leq b$.

Borel's construction (*n*D case)

A similar result can be carried out in the *n*-dimensional case. Consider $\Omega = [0, 1]^n$. The **Borel** σ -field over $[0, 1]^n = [0, 1] \times \cdots \times [0, 1]$, denoted \mathcal{B}

n times

(or $\mathcal{B}([0, 1]^n)$), is defined by

$$\mathcal{B}([0,1]^n) = \sigma(\mathfrak{I}^n),$$

where $\mathcal{I}^n := \left\{ \prod_{j=1}^n I_j \mid I_j$'s are subintervals of [0, 1]. $\right\}$ denotes the set of all rectangles in $[0, 1]^n$. It could be proved that there exists a unique probability measure $P : \mathcal{B} \to [0, 1]$ such that

$$P\left(\prod_{j=1}^{n}I_{j}\right)=(b_{j}-a_{j})\times\cdots\times(b_{1}-a_{1})$$

for any intervals I_j 's having endpoints $0 \le a \le b \le 1$. It is important to note that P(A) coincides with the *n*-dimensional volume of any event $A \in \mathcal{B}([0, 1]^n)$.

Example 17.

Consider the Borel construction $([0, 1], \mathcal{B}, P)$.

Calculate the probability that a randomly selected point $\omega \in [0,1]$ belongs to the

set $A = [0, 0.1) \cup (0.4, 0.6) \cup (0.9, 1].$

Example 18.

Consider the Borel construction ($[0, 1]^2$, \mathcal{B} , P), and let

 $A = [0, 0.5] \times [0.5, 1] \cup [0.5, 1] \times [0, 0.5].$

Calculate the probability that a randomly selected point $\omega \in [0, 1]^2$ belongs to the set A.

Some properties

Proposition 19.

Let (Ω, \mathcal{F}, P) be a probability space. Then

(a)
$$P(A^{\complement}) = 1 - P(A)$$
 for any $A \in \mathcal{F}$.
(b) $P(\emptyset) = 0$.

Example 20.

- The probability of **not getting a tail** in the trial of 10 coin tosses.
- The probability of getting **head and tail simultaneously** in a single coin toss.

Proposition 21 (Monotonicity.).

Let (Ω, \mathcal{F}, P) be a probability space and $A, B \in \mathcal{F}$. Then

 $A \subset B \implies P(A) \leq P(B).$

Example 22. The probability of drawing a **club** is less than of drawing a **black card**.

Proposition 23 (Sub- σ -additivity.).

Let (Ω, \mathcal{F}, P) be a probability space and $\{A_i\}_{i \in \mathbb{N}}$ be a countable collection of events in \mathcal{F} . Then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)\leq \sum_{i=1}^{\infty}P(A_i).$$

Example 24 (Hedging by combination).

The risk (i.e. probability) of losing money invested in both assets cannot be worse than the sum of the individual risks of the two assets.

Proposition 25. Let (Ω, \mathcal{F}, P) be a probability space and $\{A_i\}_{i \in \mathbb{N}}$ be a nondecreasing sequence of events in \mathcal{F} , i.e. $A_i \subset A_{i+1}$ for all $i \in \mathbb{N}$. Then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right) = \lim_{i\to\infty}P(A_i).$$

Corollary 26.

Let (Ω, \mathcal{F}, P) be a probability space and $\{A_i\}_{i \in \mathbb{N}}$ be a nonincreasing sequence of events in \mathcal{F} , i.e. $A_{i+1} \subset A_i$ for all $i \in \mathbb{N}$. Then

$$P\left(\bigcap_{i=1}^{\infty}A_i\right) = \lim_{i\to\infty}P(A_i).$$

The Poincaré formula is considered as the most important ones since it allows to compute the probabilities of the **and/or** events.

From now on, let $(\omega, \{, p)$ be a probability space.

Proposition 27 (Poincaré formula for 2 sets).

Let $A, B \in \mathcal{F}$ be two events. Then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Example 28 (SOA Exam P Sample Questions).

The probability that a visit to a primary care physician's (PCP) office results in neither labwork nor referral to a specialist is 35%. Of those coming to a PCP's office, 30% are referred to specialists and 40% require lab work. Calculate the probability that a visit to a PCP's office results in both lab work and referral to a specialist.

Proposition 29 (Poincaré formula for 3 **sets).** Let A_1, A_2, A_3 be three events. Then

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$$

An example using Poincaré formula for 3 sets [Verify.]

Example 30 (SOA Exam P Sample Questions). A survey of a group's viewing habits over the last year revealed the following information.

- 28% watched gynmastics (i)
- (ii)29% watched baseball
- (iii) 19% watched soccer
- 14% watched gynmastics and baseball (iv)
- (v)12% watched baseball and soccer
- (vi) 10% watched gynmastics and soccer
- (vii) 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports during the last year.

Takeaways

- \circ The generated σ -field has no closed-form description.
- One should become more familiar with the formal definition of a probability space.
- One should be able to use basic properties of a probability measure, with a special emphasis on the Poincaré formula.

