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Overview

In this class, we shall study a formal definition of a probability space using the
language of measure theory.

It is with this level of precision that allows the whole mathematical theory of
probability to be developed.
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What is inside ?

The �-filed of events.

Probability measures

Some properties
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The �-filed of events.



Outcomes and Events

� An outcome is a result of a random phenomena or a random experiment. The
set of all possible outcomes ! is called the sample space Ω.

� An event is a subset of Ω that represents a situation in which one could observe
and that a probability could be assigned. (More precise definition is coming...)

� An outcome ! is said to realize an event A if ! 2 A.
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A �-algebra

Definition 1.
Let Ω be a nonempty set. A family F � 2Ω is called a �-field (also called a
�-algebra) over Ω if the following conditions are satisfied:

(�1) Ω 2 F.
(�2) If A 2 F, then A{ := Ω n A 2 F.
(�3) If Ai 2 F for each i 2 N, then

⋃
1

i=1 Ai 2 F.

The pair (Ω;F) is called a measurable space, the set Ω is called the sample
space, and elements of F are called events.
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Some immediate properties [Prove the proposition.]

Proposition 2.
Let (Ω;F) be a measurable space. Then the following conditions hold:

(a) ? 2 F.
(b) If Ai 2 F for each i 2 N, then

⋂
1

i=1 2 F.
(c) If A;B 2 F, then A [ B 2 F and A \ B 2 F.
(d) If A;B 2 F, then A n B 2 F.
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Some immediate examples [Verify each one.]

Example 3.
Let Ω be a nonempty set.

� F0 = f?;Ωg is the smallest �-field over Ω, known as the trivial �-field.
� F1 = 2Ω is the largest �-field over Ω, known as the gross �-field.

Here, F0 and F1 are the weakest and the strongest �-fields, respectively, in the
sense that

F0 � F � F1

for any �-field F over Ω.

� Let Ω = fa;b; c;dg. Then F = f?; fa;bg; fc;dg;Ωg is a �-field over Ω.
� For any Ω and A � Ω, the set f?;A;A{;Ωg is a �-field.
� For any Ω and a nonempty subset A � Ω, the family f?;A;Ωg is not a �-field.
� Consider an interval Ω = (0; 1]. Then

F = f?; (0; 0:25]; (0:25; 0:5]; (0; 0:5]; (0:25; 1]; (0:5; 1]; (0; 0:25] [ (0:5; 1]; (0; 1]g

is a �-field over Ω. N
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Some more sophisticated examples [Prove the proposition.]

Proposition 4.
Let Ω be a nonempty set and let

A =
{
A � Ω j either A or A{ is countable

}
:

Then A is a �-field over Ω.
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Some more sophisticated examples [Left as exercises.]

Proposition 5 (Trace �-field).
Let (Ω;F) be a measurable space and E � Ω is a given nonempty set. Then

FE := fE \ A j A 2 Fg

is a �-field over Ω.

Proposition 6 (Pre-image �-field).
Let (Ω0;F0) be a measurable space, Ω a nonempty set, and f : Ω! Ω0 a given map.
Then

Ff := ff�1(A0) j A0 2 F0g

is a �-field. Then is a �-field over Ω
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An example of a pre-image �-field

Example 7.
Suppose that Ω0 = f0; 1; 2g be equipped with a �-field F0 = 2Ω.
Let Ω = f(H;H); (H; T); (T;H); (T; T)g and define f : Ω! Ω0 by

f((H;H)) = 2; f((H; T)) = f((T;H)) = 1; f((T; T)) = 0:

Calculate the �-field Ff.
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Generated �-field [Prove the propositions.]

Fix a set Ω. In practice, the �-field F over Ω is usually not given, but rather be constructed
from some initial information — the family E � 2Ω of base events. We have already seen
this earlier in many of our examples in the previous classes.

Proposition 8.
Suppose that Ω is a nonempty set and E � 2Ω be a nonempty family of subsets of Ω.
Then there exists a unique smallest �-field over Ω containing E, defined by

�(E) :=
⋂{

F � 2Ω jF � E is a �-field over Ω.
}

(1)

The proof of the above proposition is based on the following fact.

Proposition 9.
Let Ω be a nonempty set and fF�g�2Λ be a collection of �-fields over Ω.
Then F :=

⋂
�2Λ F� is also a �-field over Ω.
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Generated �-field

Definition 10.
Suppose that Ω is nonempty and let E � 2Ω be nonempty family containing base
events. Then the collection �(E), as defined in (1), is called the �-field generated
by E. On the other hand, if F is a �-field over Ω such that F = �(E) for some
collection of sets E � 2Ω, then F is said to be generated by E.

It is unfortunate that �(E) has no explicit or constructive formula. Therefore it is
usually not possible to make a descriptive list of its elements. One should have
seen from the earlier examples that even in the case where Ω is finite, the
enumeration of �(E) is a tough job. One might think that �(E) could be
constructed, for any E, by adding to the family E all possible countable unions of
its members and complements. But this it not true, even when we repeat such a
process uncountably.
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Some examples [Verify each one.]

Example 11.
Let Ω be a finite set, and E = ff!g j ! 2 Ωg. Then �(E) = 2Ω.

Example 12.
Let Ω = fa;b; c;dg and E = ffa;bg; fb; cgg. Then �(E) = 2Ω:

More generally, one could come up with the following result.

Proposition 13.
Let Ω be given, and Ω is partitioned into A1;A2; : : : ;AN (which
means Ω = A1 ] � � � ] AN). Then #�(fA1; : : : ;ANg) = 2N.
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Probability measures



Definition

Definition 14.
Let (Ω;F) be a measurable space. A probability measure (or simply a probability)
on (Ω;F) is a function P : F ! [0; 1] such that the following conditions are
satisfied:

(P1) P(Ω) = 1.
(P2) For any sequence of events (Ai)i2N in E such that Ai \ Aj = ? for all i; j 2 N

with i 6= j, it holds

P
(
1⋃
i=1

Ai

)
=

1∑
i=1

P(Ai):

Whenever P is a probability on (Ω;F), the tripple (Ω;F;P) is called a probability
space.
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Some problems utilizing (P1) and (P2) [Verify each one.]

Example 15 (SOA Exam P Sample Question).
You are given that P(A [ B) = 0:7 and P(A [ B{) = 0:9.
Calculate P(A).

Example 16 (SOA Exam P Sample Question).
In modeling the number of claims filed by an individual under an automobile
policy during a three-year period, an actuary makes the simplifying assumption
that for all integers n � 0, p(n+ 1) = 0:2p(n) where p(n) represents the
probability that the policyholder files n claims during the period.
Calculate the probability that a policyholder files more than one claim.
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Borel’s construction (1D case)

In the unit interval [0; 1], we put I := f(a;b) j 0 � a < b � 1g to be the set of all
open subintervals of [0; 1].

Consider Ω = [0; 1]. The Borel �-field, denoted by B (or B([0; 1])), is defined by

B = �(I):

Then there exists a unique probability measure P : B! [0; 1] such that

P(I) = b� a; :

for any subinterval I � [0; 1] with endpoints a � b.
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Borel’s construction (nD case)

A similar result can be carried out in the n-dimensional case.
Consider Ω = [0; 1]n. The Borel �-field over [0; 1]n = [0; 1]� � � � � [0; 1]︸ ︷︷ ︸

n times

, denoted B

(or B([0; 1]n)), is defined by
B([0; 1]n) = �(In);

where In :=
{∏n

j=1 Ij j Ij’s are subintervals of [0; 1].
}
denotes the set of all

rectangles in [0; 1]n. It could be proved that there exists a unique probability
measure P : B! [0; 1] such that

P

 n∏
j=1

Ij

 = (bj � aj)� � � � � (b1 � a1)

for any intervals Ij’s having endpoints 0 � a � b � 1. It is important to note
that P(A) coincides with the n-dimensional volume of any event A 2 B([0; 1]n). 16



Borel’s construction in action

Example 17.
Consider the Borel construction ([0; 1];B;P).
Calculate the probability that a randomly selected point ! 2 [0; 1] belongs to the
set A = [0; 0:1) [ (0:4; 0:6) [ (0:9; 1].

Example 18.
Consider the Borel construction ([0; 1]2;B;P), and let
A = [0; 0:5]� [0:5; 1] [ [0:5; 1]� [0; 0:5].
Calculate the probability that a randomly selected point ! 2 [0; 1]2 belongs to the set A.
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Some properties



Complmenting [Prove the proposition.]

Proposition 19.
Let (Ω;F;P) be a probability space. Then

(a) P(A{) = 1� P(A) for any A 2 F.
(b) P(?) = 0.

Example 20.
� The probability of not getting a tail in the trial of 10 coin tosses.
� The probability of getting head and tail simultaneously in a single coin toss.
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Monotonicity [Prove the proposition.]

Proposition 21 (Monotonicity.).
Let (Ω;F;P) be a probability space and A;B 2 F. Then

A � B =) P(A) � P(B):

Example 22.
The probability of drawing a club is less than of drawing a black card.
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Sub-�-additivity [Prove the proposition.]

Proposition 23 (Sub-�-additivity.).
Let (Ω;F;P) be a probability space and fAigi2N be a countable collection of events
in F. Then

P
(
1⋃
i=1

Ai

)
�

1∑
i=1

P(Ai):

Example 24 (Hedging by combination).
The risk (i.e. probability) of losing money invested in both assets cannot be
worse than the sum of the individual risks of the two assets.
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Monotone sequences [Prove the results.]

Proposition 25.
Let (Ω;F;P) be a probability space and fAigi2N be a nondecreasing sequence of
events in F, i.e. Ai � Ai+1 for all i 2 N. Then

P
(
1⋃
i=1

Ai

)
= lim

i!1
P(Ai):

Corollary 26.
Let (Ω;F;P) be a probability space and fAigi2N be a nonincreasing sequence of
events in F, i.e. Ai+1 � Ai for all i 2 N. Then

P
(
1⋂
i=1

Ai

)
= lim

i!1
P(Ai):
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Poincaré formula [Prove the proposition.]

The Poincaré formula is considered as the most important ones since it allows to
compute the probabilities of the and/or events.

From now on, let (!; {;p) be a probability space.

Proposition 27 (Poincaré formula for 2 sets).
Let A;B 2 F be two events. Then P(A [ B) = P(A) + P(B)� P(A \ B).
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An example using Poincaré formula [Verify.]

Example 28 (SOA Exam P Sample Questions).
The probability that a visit to a primary care physician’s (PCP) office results in
neither labwork nor referral to a specialist is 35%. Of those coming to a PCP’s
office, 30% are referred to specialists and 40% require lab work. Calculate the
probability that a visit to a PCP’s office results in both lab work and referral to a
specialist.
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Poincaré formula for 3 sets [Prove the proposition.]

Proposition 29 (Poincaré formula for 3 sets).
Let A1;A2;A3 be three events. Then

P(A1 [ A2 [ A3) =P(A1) + P(A2) + P(A3)
� P(A1 \ A2)� P(A1 \ A3)� P(A2 \ A3) + P(A1 \ A2 \ A3):
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An example using Poincaré formula for 3 sets [Verify.]

Example 30 (SOA Exam P Sample Questions).
A survey of a group’s viewing habits over the last year revealed the following
information:

(i) 28% watched gynmastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gynmastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gynmastics and soccer
(vii) 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports
during the last year.
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Takeaways



Takeaways

� The generated �-field has no closed-form description.
� One should become more familiar with the formal definition of a probability
space.

� One should be able to use basic properties of a probability measure, with a
special emphasis on the Poincaré formula.
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Bon journée!
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