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1. What is regression?

In general, regression refers to a broad class of statistical models where one wants to
fit a function to the relationship between explanatory variables and a response. Usually,
the function of choice is described by several parameters, which are to be estimated in
an error-minimizing way.

Let us study a relationship between scalar explanatory variables x1, . . . , xn and a
response variable y, which are observed across M samples. Then we make an assumption
that

yi ≈ fβ(x
i
1, . . . , x

i
n)

at each sample i = 1, . . . ,M , where fβ belongs to a certain class (e.g. affine functions,
polynomials, etc.) and is described with a vector β of parameters. The aim of a regression
model is to solve the following optimization problem

min
β

Err[(fβ(x
i
1, . . . , x

i
n)− yi)i=1,...,M ],

where Err is a function describing the errors between the observed values and the modeled
values.

Be cautious that the term variables here are known values, while the unknowns are
the parameter vector β.

In this short note, the one dimensional vector a = (a1, . . . , an) is interpreted as a
column vector. This is not the same as [a1 . . . an], which is a row vector.

2. Linear regression

The simplest class of regression models is the linear regression. In linear regression,
the regression function fβ belongs to the class of affine functions. Each affine func-
tion f : Rn → R is described by n + 1 scalar parameters, β0, β1, . . . , βn. Hence β :=

(β0, β1, . . . , βn) and fβ is expressed with

fβ(x1, . . . , xn) = β0 + β1x1 + · · ·+ βnxn.
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Hence, we make an assumption, at each sample i, that

yi ≈ β0 + β1x
i
1 + . . . βnx

i
n.

To estimate the parameters βi’s, the squares error function is used. This leads to the
least-squares problem

min
β

E(β) :=

M∑
i=1

(yi − β0 − β1x
i
1 − · · · − βnx

i
n)

2.

If we put

X =


1 x1

1 . . . x1
n

1 x2
1 . . . x2

n

...
...

...
...

1 xM
1 . . . xM

n

 and y =


y1

y2

...
yM

 ,

then the objective function becomes

E(β) = (Xβ − y)⊤(Xβ − y) = β⊤(X⊤X)β − 2(X⊤y)⊤β + y⊤y.

Since X⊤X is positive semidefinite, E is convex and so the Fermat’s rule implies that

β ∈ argminE ⇐⇒ X⊤Xβ = X⊤y.

The following Figure 2.1 shows an illustration of linear regression in one dimension.

Figure 2.1: Linear regression.

3. Quadratic regression

In quadratic regression, one takes fβ from the class of quadratic functions. The
parameter vector β is now decomposed into

◦ the intercept β0,
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◦ the linear terms βj for j = 1, . . . , n

◦ the quadratic terms βjk for j, k = 1, . . . , n with j ≤ k.

The dimension of β equals to 1 + 2n+ n(n−1)
2 and fβ is expressed with

fβ(x) = β0 +

n∑
j=1

βjxj +

n∑
j=1

n∑
k=j

βjkxjxk.

We still use the least-squares error term in our least-squares, which gives

min
β

E(β) :=
M∑
i=1

yi − β0 −
n∑

j=1

βjx
i
j −

n∑
j=1

n∑
k=j

βjkx
i
jx

i
k

2

.

We set

Xlinear = [xi
j ]i=1,...,M

j=1,...,n
and Xj

quadratic = [xi
jx

i
k]i=1,...,M

k=j,...,n
(j = 1, . . . , n).

Finally, we put

X = [1 Xlinear X1
quadratic · · · Xn

quadratic],

where 1 denotes the column vector of 1’s of appropriate dimension. Then the objective
function is, again, expressed by

E(β) = (Xβ − y)⊤(Xβ − y) = β⊤(X⊤X)β − 2(X⊤y)⊤β + y⊤y.

and we have

β ∈ argminE ⇐⇒ X⊤Xβ = X⊤y.

The following Figure 3.2 illustrates quadratic regression.

Figure 3.2: Quadratic regression
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4. Logistic regression

Logistic regression is used with a different nature when yi is either +1 or 0, where
the two values describes whether a sample belongs to a certain class. A good example is
in medical science where explanatory variables are diagnosed whether a patient has the
disease.

Since it is difficult to estimate a function with discrete values, a logistic function

p(t) =
1

1 + eµ−λt
, (t ∈ R),

whose graph is shown in Figure 4.3.

Figure 4.3: The graph of a logistic function.

One would see that p(t) → 1 as t → +∞ and p(t) → 0 as t → −∞. The idea is
then to map to the far right the points that are likely classified to the +1 class, and to
map to the far left the points that are likely classified to the 0 class. When passed into
the logistic function (and possibly again into the Heaviside function), the misprediction
should be minized through an error function.

Here, the regression function is a composition of an affine function with parame-
ters β = (β0, . . . , βn), that is

fβ(x) =
1

1 + eβ0+β1x1+···+βnxn
= p ◦ Lβ(x),

where

Lβ(x) = β0 + β1x1 + · · ·+ βnxn.

The final classification is evaluated with the Heaviside function, so that the predicted
response ŷ is computed from the variable x by

ŷ = H(fβ(x)− 0.5),
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where the Heaviside function is defined by

H(t) =

1 if t ≥ 0,

0 if t < 0.

Due to the complicate structure of the logistic regression function fβ , the squares
error is no longer appropriate as it renders the error function Err(·) nonconvex. To this
end, we use the log-loss function

J(p1, . . . , pM ) =

M∑
i=1

[
−yi ln(pi)− (1− yi) ln(1− pi)

]
, (0 < pi < 1).

Applying this to the prediction fβ(x), we consider E(β) = J ◦ (fβ(xi)). Hence, we have

E(β) =

M∑
i=1

[
−yi ln(fβ(xi))− (1− yi) ln(1− fβ(x

i))
]
,

whose structure is better suited with the logistic regression function. In particular, the
term

ln(fβ(x))

puts a positive penalty when fβ(x) is away from 1. Moreover, ln(fβ(x))→ +∞ as x→ 0+.
Similarly, the term

ln(1− fβ(x))

puts a positive penalty when fβ(x) is away from 0 and ln(1− fβ(x))→ +∞ as x→ 1−.
The prefixes yi and (1 − yi) are then used to activate the first and second parts of the
log-loss function.

Now, even though the log-loss function is used, it is still much more tricky than the
least-squares loss used in polynomial regressions. To solve for the optimal parameter β,
we aim to use the gradient descent method. Let us conventionally put xi

0 := 0 for
all i = 1, . . . ,M . Observe, for any j = 0, . . . , n, we have

∂E

∂βj
=

M∑
i=0

∂J

∂pi
∂pi

∂βj

=

M∑
i=1

pi − yi

pi(1− pi)
· pi(1− pi)xi

j

=

M∑
i=1

(pi − yi)xi
j ,

with pi = fβ(x
i). We consequently obtain

∇βE(β) = X⊤(p− y),
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where X = [xi
j ]i=1,...,M

j=0,...,n
is the data matrix and p = (p1, . . . , pM ).

Algorithm 1 Gradient Descent Algorithm (with fixed learning rate)

Require:
Initial parameter β0 = (β0

0 , . . . , β
0
n),

explanatory matrix X = [xi
j ]i=1,...,M

j=0,...,n
,

response vector y = (y1, . . . , yM ),
learning rate α,
loss function E(β).

Ensure: Optimized parameter β = (β0, . . . , βn).
1: Initialize β ← β0.
2: repeat
3: Compute the prediction: ∀i = 1, . . . ,M, pi ← fβ(x

i).
4: Update parameters: β ← β − αXT (p− y).
5: until convergence criterion is met
6: return β.

Following this procedure, we have a visual illustration of logistic regression as in the
following figure.

Figure 4.4: Logistic regression

In this Figure 4.4, the green points belong to the +1 class while the red points belong
to the 0 class. They are then mapped through to the regression curve on the right-hand-
side. Note that the green points should be mapped high into the shoulder of the curve,
while the red points should be mapped into the toe area. There are some misclassification
occured in the above calculation, which is natural in any classification tool.
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