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Foreword
This lecture note covers important classical topics in both constrained and unconstrained optimization,

each will be treated from the theoretical aspect following by algorithmic studies. This document is designed
for senior bachelor and master students in mathematics.

Contents

1 Introduction 2
1.1 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Existence of a Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Global vs. Local Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Some Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Unconstrained Optimization Problems – Theory 14
2.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Quadratic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Unconstrained Optimization Problems – Algorithms 19
3.1 Step-size Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Accumulation Properties of General Descent Methods . . . . . . . . . . . . . . . . . . . . . 21
3.3 Gradient Descent Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Constrained Optimization Problems – Theory 31
4.1 Optimality Conditions for Abstract Constraints . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 KKT Conditions for Equality and Inequality Constraints . . . . . . . . . . . . . . . . . . . 33
4.3 KKT Conditions for Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 KKT Conditions for Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Sufficiency of KKT Conditions under Convexity . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Linear Programs and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Programming packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Constrained Optimization Problems – Algorithms 43
5.1 Projected Gradient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Duality and Uzawa’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



§ 1. Introduction

An optimization problem consists of three main ingredients:

• a decision space X,

• a constraint set C ⊂ X, and

• an objective function f : U → R, where U ⊂ X is nonempty,

and aims at finding a point x ∈ C such that f(x) ≤ f(x) for all x ∈ C. This can be
conventionally written as

Opt(f, C)

{
min f(x)
s.t. x ∈ C.

For the problem to make sense, we may require C ∩ U ̸= ∅. It does not hurt then
to assume that C ⊂ U . We shall develop a shorthand notation x ∈ Opt(f, C) to
denote that x is a solution to the optimization problem Opt(f, C). Concerning with
the problem Opt(f, C), the point x ∈ X is said to be feasible if it belongs to the
constraint set C. If C = X, then any x ∈ X is feasible and the optimization problem
is said to be unconstrained. We shall write Opt(f) := Opt(f,X) for an unconstrained
optimization problem.

Notice that the constraint set C above can be just anything, hence the general
form of Opt(f, C) is said to be equipped with an abstract constraint. Of course, the
constraint C can be described in a more explicit form, i.e. by inequalities and equalities:

C =

{
x ∈ X

∣∣∣∣ gi(x) ≤ 0, ∀i = 1, 2, · · · , r
hj(x) = 0, ∀j = 1, 2, · · · , l

}
where the (vector) functions g = (g1, g2, · · · , gr) : X → Rr and h = (h1, h2, · · · , hl) :
X → Rl are given. In this case, Opt(f, C) will be represented by Opt(f, g, h) with

Opt(f, g, h)


min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, 2, · · · , r

hj(x) = 0 ∀j = 1, 2, · · · , l.
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There are chances that the optimization problem that we are facing has either in-
equality constraints alone with no inequalities or equality constraints alone without
inequalities. In such cases, we may respectively set h ≡ 0 or g ≡ −1.

In this note, we will only consider the case where X is a Euclidean space Rn.
Be cautious that eventhough some results generalize directly into infinite-dimensional
(Hilbert or Banach) spaces, many of them may not be so.

1.1 Some Examples

In this section, we take a look at some optimization problems. Of course, we may
consider minimizing a function f(x) = 2.5x4−x3+5x2−1 over an equality constraint
x2 + 2y2 = 5 and an inequality constraint x + y ≤ 1, but this is too academic and
far from real-world applications. So, let us give some motivating examples and also to
observe how the problems may be formulated from practical situations.

Example 1.1 (Container design). A soft drink manufacturer would like to produce a
cylindrical can that would hold 330 mL of liquid. The manufacturer wants to decide
the dimension of this can so that the material used to make this can is minimized.

Example 1.2 (Steel enhancement cost). To enhance a certain type of steel to achieve
endurance rate E > 0, we may add some additional materials M1, · · · ,Mn. Each unit
of the material Mi has an enhancement rate Ei ≥ 0 and the processing cost ci. The
objective here is to minimize the processing cost while the steel is enhanced to the
desired endurance E.

Example 1.3 (Portfolio optimization). A man has $20,000 worth for investment and
he is interested to invest in four different financial instruments as follows.

Choice 1. Buy stock X which is selling at $20 per share.

Choice 2. Purchase a European call options to buy a share of stock X at $15 in exactly
6 months time. The options are selling for $10.

Choice 3. Raise more funds for investment by selling the European call options above.

Choice 4. Purchase a 6-month riskless zero-coupon bonds having a face value of $100
at the price of $90.

This man has determined that there are three equally likely scenarios that may
occur to the stock X, namely
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Scenario 1. Stock X sells for $20 per share in 6 months.

Scenario 2. Stock X sells for $40 per share in 6 months.

Scenario 3. Stock X sells for $12 per share in 6 months.

Due to the risks involved, there is a margin on the total number of European call
options that you can sell, in this case set to 500. Also, a person is limited to the
maximum of 5000 calls.

The aim of this man is to make an investment plan for the available choices.

Example 1.4 (A linear system as an optimization problem). Solving a linear system
Ax = b for x ∈ Rn, where A ∈ Rm×n and b ∈ Rm, may exploits the unconstrained
optimization structure of the objective function f(x) = 1

2x
⊤Ax− b⊤x.

Example 1.5 (Linear regression). Suppose that we have collected some experimental
data y1, · · · , ym at each initial variable x1, · · · , xm ∈ Rn, where it is known that yi
depends linearly on xi. Then the linear regression aims at finding the best affine
approximation r(x) = ⟨a, x⟩ + b to all yi’s, where a ∈ Rn and b ∈ R represents the
gradient and offset of the affine approximation.

1.2 Existence of a Minimizer

The existence of a minimizer is the first question that we would investigate, and it
is really simple and general. Suppose throughout the section that f : Rn → R.

Theorem 1.6 (Weierstraß theorem). Let f be a lsc function and C is a nonempty
compact subset of Rn. Then Opt(f, C) has a solution.

Proof. Let (xn) be a sequence in C for which f(xn)→ infC f . Since C is compact, we
may assume that (xn) is convergent to some x∗ ∈ C. Using the lower semicontinuity
of f , we get infC f = lim infn f(xn) ≥ f(x∗). This shows that infC f is finite and that
x∗ is a minimizer of f over C.

The existence of a constrained solution above may be adopted to the unconstrained
problem too.

Corollary 1.7. Let f be a lsc function in which some sublevel set that is nonempty
and compact. Then Opt(f) has a solution.
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Corollary 1.8. Let f : Rn → R be a lsc function in which there is a nonempty
bounded sublevel set. Then Opt(f) has a solution.

The uniqueness of a minimizer is usually not achievable and most of the time not
of interests. However, in the case where the objective function is strictly convex, we
may obtain the uniqueness of a minimizer.

1.3 Global vs. Local Solutions

All the solutions of Opt(f, C) described earlier are known more specifically as the
global solution. In some context, we may not be previleged enough to be able to obtain
the global solution. Hence we may also talk about the local solution concept. A feasible
point x ∈ C is called a local solution to Opt(f, C) if there is a neighborhood N of x
such that x ∈ Opt(f, C ∩ N). We write x ∈ LOpt(f, C) to denote that x is a local
solution of Opt(f, C). Obviously, Opt(f, C) ⊂ LOpt(f, C).

We can also talk about the solution in a strict sense: A point x∗ ∈ C is said to be
a strict solution of Opt(f, C) if f(x∗) < f(x) for all x ∈ C. The strict local solution
is defined likewise.

1.4 Some Calculus

Always let f : U ⊂ Rn → R, where U is an open set. Let us recall some differential
calculus regarding such a function f .

Definition 1.9. Let x ∈ U and d ∈ Rn. The directional derivative of f at x in the
direction d is defined by

f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
,

if the above limit exists.

Clearly, we have f ′(x;αd) = αf ′(x; d) for α ≥ 0. If f ′(x;−d) = −f ′(x; d), then
we have f ′(x; d) = limt→0

f(x+td)−f(x)
t .

Definition 1.10. A function f is said to be Gâteaux differentiable at x ∈ U if the
directional derivatives f ′(x; d) exist for all directions d ∈ Rn and is linear in d. That
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is, there exists a linear function dfx : Rn → R, called the Gâteaux derivative of f at x,
in which

dfx(d) = f ′(x; d)

for all d ∈ Rn. We say that f is Gâteaux differentiable if it is so for all x ∈ U .

The Gâteaux differentiability is closely related to the existence of the gradient ∇f .
Recall that, for each i = 1, · · · , n, the partial derivative ∂f

∂xi
(x) is defined by f ′(x; ei)

where ei is the vector with 1 in the ith entry and the remainig entries are 0. The

gradient of f at x is ∇f(x) :=
[

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
]⊤

.

Proposition 1.11. If f is Gâteaux differentiable at x, then ∇f(x) exists and dfx(d) =
⟨∇f(x), d⟩ = ∇f(x)⊤d.

Proof. Left as a student’s exercise.

Another useful result for Gâteaux differentiable function is the following version of
mean value theorem.

Theorem 1.12. Let f : U → R be a Gâteaux differentiable function. If x, y ∈ U are
distinct points such that [x, y] ⊂ U , then there is a point z ∈]x, y[ such that

f(y) = f(x) + ⟨∇f(z), y − x⟩.

Nexy, let us consider a stronger notion of differentiability.

Definition 1.13. The function f is said to be Fréchet differentiable at x ∈ U if
there exists a linear function ℓ : Rn → R, called the Fréchet derivative at x (written
⟨ℓ, x⟩ = ℓ(x)), such that

lim
∥h∥→0

f(x+ h)− f(x)− ⟨ℓ, h⟩
∥h∥

= 0.

We say that f is Fréchet differentiable if it is so at all x ∈ U .

In Landau’s little “oh” notation, we may write the Fréchet differentiability as

f(x+ h) = f(x) + ⟨l, h⟩+ o(∥h∥).

Theorem 1.14. If f is Fréchet differentiable at x ∈ U , then f is continuous at x and
is Gâteaux differentiable. Moreover, the Fréchet derivative ℓ is identical to dfx (and
hence to ∇f).
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The students are invited to find an example of a function that is (a) Gâteaux
differentiable but not continuous, and (b) Gâteaux differentiable but not Fréchet dif-
ferentiable. In fact, the converse can be achievable from the conitnuous differentiability.
Hence, in finite-dimensional setting, the Fréchet differentiability is vert relevant and
will always be adopted when higher differentiability of f is assumed.

Theorem 1.15. Let f be Gâteaux differentiable at x and all the partial derivatives
are continuous at x. Then f is Fréchet differentiable at x.

In all cases, if f is differentiable (either Gâteaux or Fréchet), then each x ∈ U is
assigned to a linear function dfx. This can be viewed as a map df : U → L(Rn,R) that
assigns x with dfx, where L(Rn,R) is the Banach space of all linear functions from Rn

into R. Note, in this setting, that L(Rn,R) can be identified by Rn (dfx by ∇f(x)).
Hence we use the identification df : U → Rn through df(x) = dfx ≡ ∇f(x).

Definition 1.16. We say that f is continuously differentiable if it is Fréchet differen-
tiable and its derivative df is continuous.

Now, we may adopt a similar differentiation approach to a vector function g =
(g1, · · · , gm) : U → Rm by representing the derivative dgx with the Jacobian matrix
Jg(x) = [∇g1(x) · · · ∇gm(x)]⊤. We may state formally as follows.

Definition 1.17. A vector function g defined as above is called Fréchet differentiable
at x ∈ U if there exists a linear map dgx : Rn → Rm, called the Fréchet derivative at
x, satisfying

lim
∥h∥→0

∥g(x+ h)− g(x)− dgxh∥
∥h∥

= 0.

If such differentiability holds for all x ∈ U , then we say that g is Fréchet differentiable.

Similar calculation as in the real-valued case may be carried out to show that
dgxd = Jg(x)d = [∇g1(x) · · · ∇gm(x)]⊤d for all d ∈ Rn. Moreover, breaking down
the norm in the numerator, we see that g is Fréchet differentiable at x if and only if
each coordinate function gi is.

Now, let us rewind back and consider a scalar function f : U → R. Since its
derivative is a vector function df : U → Rn, we may consider taking another Fréchet
derivative of df , that is d2f := d(df). Since we have df =

(
∂f
∂x1

, · · · , ∂f
∂xn

)
, the Jacobian

argument suggests the Hessian matrix

∇2f :=

[
∂2f

∂xj∂xi

]
i,j=1,··· ,n

=

[
∇

(
∂f

∂x1

)
· · · ∇

(
∂f

∂xn

)]⊤
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to be the representation of d2f . When taking d2f at a point x ∈ U , the result d2fx is
of course is a map from U into L(L(Rn,R),R) ≡ L(Rn × Rn,R) ≡ Rn×n. Hence d2f
can be viewed as a map from U into Rn×n. If this map is continuous, then we say that
f is twice continuously differentiable. This is equivalent to saying that all component
functions, in this case the second-order partial derivatives, are continuous. It is further
implied that ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
for all i, j = 1, · · · , n, so that ∇2f is symmetric. Note

that d2fx can further be identified as a bilinear function accepting two variables u and
v from Rn. We may have figured that

d2fx(u, v) = u⊤∇2f(x)v

for u, v ∈ Rn.

Finally, we recall the Taylor’s approximation for a scalar function in terms of ∇f
and ∇2f .

Theorem 1.18 (Taylor’s approximation). Let f be twice continuously differentiable.
Then for any x ∈ U , t > 0 and h ∈ Rn with x+ th ∈ U , it holds

f(x+ th) = f(x) + t⟨∇f(x), h⟩+ t2

2
⟨h,∇2f(x)h⟩+ o(t2).

The following version Mean Value Theorem also plays an important role in our
analysis.

Theorem 1.19. Let f be twice continuously differentiable, x, y ∈ U be two distinct
points with [x, y] ⊂ U . Then there exists a point z ∈]x, y[ such that

f(y) = f(x) + ⟨∇f(x), y − x⟩+ 1

2
⟨y − x,∇2f(z)(y − x)⟩.

1.5 Convexity

For any x, y ∈ Rn, the line segment joining them is defined by

[x, y] := {(1− t)x+ ty | t ∈ [0, 1]}.

We write [x, y[, ]x, y] and ]x, y[ to denote the line segments that exclude the point y,
x, and both ends, respectively.

A subset C ⊂ Rn is said to be convex if [x, y] ⊂ C for all x, y ∈ C. A function
f : U → R is said to be convex on a convex set C ⊂ U if the inequality

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (1.1)
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holds for any x, y ∈ C and any λ ∈ [0, 1]. If f is convex on its domain U (implicitly
implied that U is convex), we simply say that f is convex, without specifying the set
C. If the inequality (1.1) holds strictly for all x, y ∈ C with x ̸= y and all λ ∈]0, 1[,
we say that f is strictly convex on C.

We may develop a geometric description for a convex function as follows.

Theorem 1.20. f is convex if and only if its epigraph

epi f := {(x, t) ∈ U × R | f(x) ≤ t}

is a convex set in Rn+1.

Proof. The proof will be done in class.

Let us now discuss what convexity provides in terms of optimization.

Theorem 1.21. If f : U → R is a convex function and C is a convex set, then
LOpt(f, C) = Opt(f, C).

Proof. The proof will be done in class.

Theorem 1.22. If f : U → R is a strictly convex function and C is a convex set,
then Opt(f, C) contains at most one point.

Proof. The proof will be done in class.

In the following, we characterize the convexity of a function f with its gradient ∇f
and Hessian ∇2f .

Theorem 1.23. If f : Rn → R is continuously differentiable, then f is convex if and
only if the subgradient inequality

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ (1.2)

holds for all x, y ∈ Rn.

Proof. (Only if) Take x, y ∈ U and t ∈ (0, 1). Then

f(x+ t(y − x)) = f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).
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Rearrangement yields

f(y) ≥ f(x+ t(y − x))− (1− t)f(x)

t

=
f(x+ t(y − x))− f(x) + tf(x)

t

=
f(x+ t(y − x))− f(x)

t
+ f(x).

Letting t→ 0+, we get

f(y) ≥ f(x) + lim
t→0+

f(x+ t(y − x))− f(x)

t
= f(x) + ⟨∇f(x), y − x⟩.

The (If) part is left as an exercise.

If f is twice continuously differentiable, we may characterize its convexity with the
positivity of its Hessian. Recall first that a matrix A ∈ Rn×n is said to be positive
semidifinite (resp. definite) if A is symmetric and d⊤Ad ≥ 0 (resp. d⊤Ad > 0) for all
d ∈ Rn. We adopt the notation A ⪯ B and A ≺ B, for any A,B ∈ Rn×n, whenever
B − A is positive semidefinite and positive definite, respectively. In such cases, we
sometimes write B ⪰ A and B ≻ A to emphasize on B. If eigenvalues are accessible
for a given matrix A, the positivity of A can be easily checked.

Theorem 1.24. If A is a symmetric matrix, then

(i) A is positive semidefinite if and only if all its eigenvalues are non-negative.

(ii) A is positive definite if and only if all its eigenvalus are strictly positive.

Theorem 1.25. Let f be a twice continuously differentiable function. Then

(i) f is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ Rn, and

(ii) f is strictly convex if and only if ∇2f(x) ≻ 0 for all x ∈ Rn

Proof. Let us prove (i) only, as (ii) is proved similarly.

(Only if) Let f be convex and take any d ∈ Rn. It follows from the previous
theorem and Taylor’s approximation that

f(x) + t⟨∇f(x), d⟩ ≤ f(x+ td) = f(x) + t⟨∇f(x), d⟩+ t2

2
⟨d,∇2f(x)d⟩+ o(t2).

This gives ⟨d,∇2f(x)d⟩+ o(t2)/t2 ≥ 0. The result follows by taking t→ 0+.
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(If) Conversely, suppose that ∇2f(x) ⪰ 0 at all x ∈ U . Take any x, y ∈ U with
x ̸= y. Trom the Mean Value Theorem 1.19, there exists a point z ∈]x, y[ such that

f(y) = f(x) + ⟨∇f(x), y − x⟩+ 1

2
⟨y − x,∇2f(z)(y − x)⟩ ≥ f(x) + ⟨∇f(x), y − x⟩.

The Theorem 1.23 implies that f is convex.

The second-order characterization above suggests an approach to further strengthen
the convexity.

Definition 1.26. A twice continuously differentiable function f : U → R is said to
strongly convex on C with a constant m > 0 if ∇2f(x) ⪰ mI for all x ∈ U , where I
denotes the identity matrix.

Theorem 1.27. A twice continuously differentiable function is strongly convex on a
convex set C with a constant m > 0 if and only if λmin(x) ≥ m for all x ∈ C, where
λmin(x) denotes the minimum eigenvalue of ∇2f(x). In particular, a strongly convex
function is strictly convex.

We also get a sharper subgradient inequality. At the same time, the inequality
appeared in the theorem states that a strongly convex function can be supported from
below by a quadratic function.

Theorem 1.28. If f : U → R is strongly convex with a constant m > 0, then for any
x, y ∈ U , the following inequality holds:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2.

Proof. Let x ∈ U and d ∈ Rn. We have

u⊤∇2f(x)u ≥ m∥u∥2.

Let y ∈ U be different from x. Using the Mean Value Theorem 1.19 together with the
above inequality, there exists z ∈]x, y[ such that

f(y) = f(x) + ⟨∇f(x), y − x⟩+ 1

2
(y − x)⊤∇2f(z)(y − x)

≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2.

Another way to relate a strongly convex function with its quadratic support is as
follows.
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Theorem 1.29. A function f is strongly convex with a constant m > 0 if and only if
f − m

2 ∥ · ∥
2 is convex. In particular, if f is strongly convex with a constant m > 0, we

have
f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)− m

2
λ(1− λ)∥x− y∥2

for all x, y ∈ U .

Proof. Let g be a function on U defined by g := f − m
2 ∥ · ∥

2. Notice that if ∇2f
exist for all x ∈ U , then the same holds for ∇2g with ∇2g = ∇2f −mI. The result
immediately follows from the definition of strong convexity.

Next, suppose that f is strongly convex with a constant m > 0. Using the Apol-
lonius identity and the convexity of f − m

2 ∥ · ∥
2 yield

f((1− λ)x+ λy)− m

2
[(1− λ)∥x∥2 + λ∥y∥2 − λ(1− λ)∥x− y∥2]

= f((1− λ)x+ λy)− m

2
∥(1− λ)x+ λy∥2

≤ (1− λ)f(x) + λf(y)− (1− λ)
m

2
∥x∥2 − λ

m

2
∥y∥2,

and we have arrived at the desired conclusion.

This leads to the following elegant result.

Theorem 1.30. Suppose that f : U → R is a strongly convex function (with a constant
m > 0) and there exists x ∈ U in which Sf(x) is closed. Then f has a unique
minimizer.

Proof. Let x be as in the hypothesis and take y ∈ Sf(x). Then

0 ≥ f(y)− f(x)

≥ ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2

≥ −∥∇f(x)∥∥y − x∥+ m

2
∥y − x∥2.

This implies ∥∇f(x)∥ ≥ m
2 ∥y − x∥, so that

diamSx = sup
y,z∈Sf(x)

∥y − z∥

≤ sup
y∈Sf(x)

∥y − x∥+ sup
z∈Sf(x)

∥z − x∥

≤ 4

m
∥∇f(x)∥ <∞.
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Hence Sf(x) is bounded and nonempty. Since Sf(x) is also closed, it is compact. The
existence of a minimizer follows from Corollary 1.7, while the uniqueness follows from
the strict convexity (see Theorem 1.22).

Note that if U = Rn, then Sf(x) is closed for all x ∈ U if f is strongly convex. This
leads to our final corollary.

Corollary 1.31. A strongly convex function f : Rn → R has a unique minimizer.
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§ 2. Unconstrained Optimization Problems – Theory

Unless otherwise specified, always assume that X = Rn equipped with the Eu-
clidean norm ∥ · ∥. Suppose that U ⊂ Rn is nonempty and open, and f : U → R is a
given objective function.

2.1 Optimality Conditions

Ironically, we have no knowledge of how to solve Opt(f) directly from its definition.
All the existed methods rely on transforming Opt(f) into some other forms that we
feel more confortable with. In this case, we may cautiously turn Opt(f) into a critical
point equation ∇f(x) = 0. Note that the two problems are not generally equivalent.
With the following theorem, we may see that a critical point equation for ∇f is a
relaxation of Opt(f).

Theorem 2.1 (First-Order Necessary Optimality Condition). Suppose that f is con-
tinuously differentiable, then

x ∈ LOpt(f) =⇒ ∇f(x) = 0.

Proof. To be proved in class.

Theorem 2.2 (Second-Order Necessary Optimality Condition). Suppose that f is
twice continuously differentiable, then

x ∈ LOpt(f) =⇒ ∇2f(x) ⪰ 0.

Proof. Let x ∈ LOpt(f). We know that ∇f(x) = 0 and for any h ∈ Rn, f(x+ th) ≥
f(x) for t ∈ R\{0} sufficiently close to 0. Using the Taylor’s approximation (Theorem
1.18), we have

t2

2
⟨h,∇2f(x)h⟩+ o(t2) ≥ 0.

Dividing both sides by t2 and letting t→ 0 yield

h⊤∇2f(x)h ≥ 0,

and the proof is finished.

14



To have the sufficiency, we need the (local) convexity of f through the positivity
of the Hessian.

Theorem 2.3 (Second-Order Sufficient Optimality Condition). Suppose that f is twice
continuously differentiable and ∇f(x) = 0. If ∇2f(x) ≻ 0, then x ∈ LOpt(f).

Proof. Fix h ∈ Rn. Since ∇2f is continuous and h⊤∇2f(x)h > 0, then there is a
neighborhood N ⊂ U of x in which h⊤∇2f(x)h > 0 for all x ∈ N . The Mean Value
Theorem 1.19 implies that for any x ∈ N \ {x}, there exists zx ∈]x, x[ in which

f(x) = f(x) +
1

2
h⊤∇2f(zx)h ≥ f(x).

This shows that x ∈ LOpt(f).

Discussion 2.4. Is it possible to replace ∇2f(x ≻ 0) with ∇2f(x) ⪰ 0 in the above
theorem ? Discuss in general terms and from the theoretical perspective from the
above proof.

Theorem 2.5 (Sufficient Optimality Condition for Convex Functions). Suppose that
f is continuously differentiable and convex, then

∇f(x) = 0 =⇒ x ∈ Opt(f).

Proof. Follows from the subgradient inequality 1.2.

If one wish to find a (local) maximum instead of minimum, the criterion can easily
be reverted and the sufficient condition for such case would be ∇2f(x) ≺ 0 at a critical
point x ∈ U . A more complicate question is how to classify a critial point x that is
neither a local mimimzer nor a local maximizer. Such a critical point is said to be
saddle.

Theorem 2.6. Let f be twice continuously differentiable and ∇f(x) = 0. If ∇2f(x)
is indefinite (i.e. having both positive and negative eigenvalues), then x is a saddle
point.

Proof. Take a positive eigenvalue λ of ∇2f(x) and let v ∈ Rn be an associated nor-
malized eigenvector. Let r > 0 be sufficiently small so that x+rv ∈ U . Using Taylor’s
approximation (Theorem 1.18) and the fact that ∥v∥ = 1, we get

f(x+ tv) = f(x) +
t2

2
v⊤∇2f(x)v + o(t2) = f(x) +

λt2

2
+ o(t2)
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for t ∈ (0, r). Note that we may squeeze t > 0 sufficiently small so that o(t2) > −λt2

2 .
Combining this with the above approximation, we get

f(x+ tv) > f(x)

for small t > 0. This means x is not a local maximizer.

The proof can be repeated for a negative eigenvalue to ensure that x is not a local
minimizer.

Discussion 2.7. What happens a linear function is minimized without a constraint?

2.2 Quadratic functions

Quadratic functions deserves a special attention in optimization theory. This is be-
cause the computation of its gradient and Hessian is a light work, and it carries good
numerical behaviors. Moreover, in view of Taylor’s approximation, any twice contin-
uously differentiable function can be very accurately approximated with a quadratic
function. Due to these joyful attributes, many applications were formulated as mini-
mizing an appropriate quadratic functions.

Definition 2.8. A quadratic function over Rn is a function f : Rn → R of the form

f(x) = x⊤Ax+ b⊤x+ c,

where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R.

Proposition 2.9. Let f be a quadratic function given as in the above definition.
Then for any x ∈ Rn, ∇f(x) = 2Ax+ b and ∇2f(x) = 2A. In particular, it is twice
continuously differentiable and its convexity can be determined from A.

Proof. The proof is done by direction calculations.

The following proposition is also a direct computation.

Proposition 2.10. Let f : Rn → R be a quadratic function given by

f(x) :=
1

2
x⊤Ax− b⊤x for all x ∈ Rn.

Then

16



(i) ∇f(x) = 0 if and only if Ax = b,

(ii) if A ⪰ 0, then x ∈ Opt(f) ⇐⇒ Ax = b,

(iii) if A ≻ 0, then A is invertible and x := A−1b ∈ Opt(f).

In the above problem, the function f has a minimizer if and only if the system
Ax = b is consistent (at least one solution exists). Let us complement the study with
the inconsistent case.

Example 2.11 (Overdetermined linear systems). When the system is inconsistent (no
solution), one may look for a point x in which Ax best approximates the target b, i.e.
minimizing ∥Ax − b∥. Usually we consider minimizing 1

2∥Ax − b∥2 instead, as it is
quadratic, smooth and has the same minimizer as ∥Ax− b∥.

Let us now state the formulation precisely. Consider a linear system

Ax = b,

where A ∈ Rm×n and b ∈ Rm with m > n and that rank(A) = n (i.e. overdetermined).
Define a function f : Rn → R by

f(x) :=
1

2
∥Ax− b∥2

for x ∈ Rn. To realize that this is quadratic, observe that

f(x) =
1

2
∥Ax− b∥2 = 1

2
(Ax− b)⊤(Ax− b) =

1

2
x⊤(A⊤A)x− b⊤Ax+

1

2
∥b∥2,

for all x ∈ Rn. Since A⊤A is symmetric, the function f is quadratic. We may compute
∇f and ∇2f following the earlier discussion. One may then observe the convexity of
f .

Example 2.12 (Linear regression and data fitting). We have described before the
formulation of linear regression. If the set {(xi, yi)}i=1,··· ,m represents the collection of
known samples, where yi’s depend linearly on xi’s. Suppose that xi’s belong to Rn and
yi’s belong to R. We are looking for a ∈ Rn in which a⊤xi ≈ yi for all i = 1, · · · ,m.
We do so my minimizing the mean square of the difference between a⊤xi and yi,
i.e.

∑
i(a
⊤xi − yi)

2 =
∑

i(x
⊤
i a − yi)

2 = ∥Xa − y∥2 where X = [x1 · · · xm]⊤ and
y = [y1 · · · ym]⊤. The optimization problem is then

min
a∈Rn
∥Xa− y∥2.
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In fact, a linear regression problem allows the measurements yi’s to depend linearly
on xi’s. This case is in fact included readily in such a linear setting above (how?).

Example 2.13 (Denoising: quadratic regularization). Suppose that a measurement
b ∈ Rn was captured from an original data x ∈ Rn. Usually, the measurement b is
noisy and b = x + n, for some n ∈ Rn representing an unknown noise vector. To
remove the noise we try to minimize n, but then we are minimizing the data fitting
term ∥b− x∥ where we will naturally get x = b, which is still noisy.

To over come this, we need to exploit some a priori information that the original
data x is smooth in the sense that xi and xi+1 are relatively close. Adding this smooth-
ing term into the objective, we get the objective function f : Rn → R defined for each
x ∈ Rn by

f(x) := ∥x− b∥2︸ ︷︷ ︸
data fitting term

+λ

n−1∑
i=1

|xi − xi+1|2︸ ︷︷ ︸
smoothing term

= ∥x− b∥2 + λ∥Sx∥2,

where λ > 0 is regularization weight and S ∈ R(n−1)×n is a matrix given by

S :=


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
... ... ... ... . . . ... ...
0 0 0 0 · · · 1 −1

 .
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§ 3. Unconstrained Optimization Problems – Algorithms

Always suppose that f : Rn → R. A general scheme used in searching for a
minimizer takes the following form.

Algorithm 3.1. General search scheme.
Initialization:

Pick a start point x0 ∈ Rn.
Set k ← 0.

While: ∇f(xk) ̸= 0;
Choose tk > 0 and dk ∈ Rn.
Compute xk+1 ← xk + tkd

k.
Update k ← k + 1.

In the above setting, the vector dk is called the search direction and the positive
scalar tk is known as the step length (or step size). The main question is: how to
come up with how the directions dk and step lengths tk should be determined so that
xk → x∗ ∈ Opt(f), or at least f(xk)→ inf f ?

Usually, we require dk to be a descent direction, i.e. decrease the value of the
objective function f . However, to define such decrease by comparing f(xk) and f(xk+1)
may be impractical since xk+1 also depends on the step length tk. To avoid such
drawback and state such a decrease purely with the current position x and the direction
d, we may use the following definition.

Definition 3.2. A vector d ∈ Rn is called a descent direction at x ∈ Rn if f ′(x; d) < 0.

The terminology “descent” is used here since if d is a descent direction, then one
can see from the definition of f ′(x; d) that there is ε > 0 such that f(x + td) < f(x)
for all t ∈ (0, ε). This has to be used with caution since here is generally no guarantee
that f(x + td) < f(x) would hold for any t > 0. In fact, it is most likely that
f(x+ td) > f(x) when t > 0 is chosen too large, i.e. overshooting may occur.
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3.1 Step-size Determination

There are then several approaches to determine the step sizes tk’s at each iteration.
Suppose that the point xk has been computed and the gradient descent direction dk ̸= 0
is used. We shall list the following few of the most famous techniques.

a) Constant step-size rule. Take some t > 0 and let tk := t for all k ∈ N.

b) Vanishing step-size rule. Choose a priori a decreasing positive real sequence
(tk) in which tk → 0.

c) Exact linesearch rule. For each k ∈ N, take tk = argmint>0 f(x
k + tdk).

d) Armijo’s backtracking linesearch rule. Choose a priori an acceptable rate of
descent α ∈ (0, 1), an initial step length s > 0, and a decremental ratio β ∈ (0, 1).
For each k ∈ N, define tk := βis (here β is raised to the power i), where i ∈ N∪{0}
is the least integer satisfying

f(xk + sβidk) ≤ f(xk) + αsβi⟨∇f(xk), dk⟩. (3.1)

The existence of such i ∈ N ∪ {0} in this rule needs a closer look. Let us suppose
that no such i ∈ N ∪ {0} exists, so that at t := βis (for any i ∈ N ∪ {0}), it holds

f(xk + tdk) > f(xk) + αt⟨∇f(xk), dk⟩. (3.2)

Recall also that

f(xk + tdk) = f(xk) + t⟨∇f(xk), dk⟩+ o(t).

Combining the two, we obtain that

(α− 1)⟨∇f(xk), dk⟩+ o(t)

t
< 0.

Letting t → 0+, we obtain (α − 1)⟨∇f(xk), dk⟩ ≤ 0. This is a contradiction,
because (α− 1) < 0 and ⟨∇f(xk), dk⟩ < 0.

Discussion 3.3. Give a geometric interpretation of the Armijo’s backtracking line-
search rule.
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3.2 Accumulation Properties of General Descent Methods

Always assume that f : Rn → R is continuously differentiable. In this section,
we give a preliminary convergence analysis for general descent methods in which the
descent directions dk is bounded towards the direction of steepest descent −∇f(xk)
(the discussion will be given in the next section). This can be made precise as follows.

Let ε > 0 be a given deviation threshold. Suppose that xk has been computed
and ∇f(xk) ̸= 0. We assume that the unit direction dk is chosen so that the angle θk
between the two vectors −∇f(xk) and dk satisfies

cos θk =
⟨−∇f(xk), dk⟩
∥∇f(xk)∥

∈ (ε, 1], ∥dk∥ = 1. (3.3)

Note from this condition that dk is a descent direction, since we have

⟨∇f(xk), dk⟩ < −ε∥∇f(xk)∥ ≤ 0.

In the following theorem, an accumulation properties of any descent method satis-
fing the above bound is discussed. Note, however, that there is no guarantee either for
the full convergence nor the existence of a limit point.

Theorem 3.4. Let (xk) be a sequence generated from Algorithm 3.1 where the search
directions satisfy (3.3) and the Armijo’s backtracking linesearch rule is applied with
parameters α, s, β. If x ∈ Rn is a limit point of (xk), then ∇f(x) = 0.

Proof. Suppose that Algorithm 3.1 generates an infinite sequence and let x is a limit
point of xk so that there is a subsequence (xkq) of (xk) in which limq x

kq = x. We may
also assume that dkq converges to some d ∈ Rn with ∥d∥ = 1. From the linesearch
rule, we have

f(xkq)− f(xkq + tkqd
kq) ≥ −αtkq⟨∇f(xkq), dkq⟩ ≥ εαtkq∥∇f(xkq)∥. (3.4)

Suppose to the contrary that ∇f(x) ̸= 0. Then the condition (3.3) implies that
⟨∇f(x), d⟩ < 0. Moreover, since (f(xk)) is decreasing, it converges to some f ∗. To-
gether with (3.4), this makes tkq → 0 as q →∞. It is reflected in the latter conclusion
that the backtracking process at the step kq is not succeeded at i = 0. This means

f(xkq)− f

(
xkq +

tkq
β
dkq

)
< −α

tkq
β
⟨∇f(xkq), dkq⟩.
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Apply the Mean Value Theorem 1.12 to f
(
xkq +

tkq
β dkq

)
in the above inequality for

each q ∈ N, there exists zkq ∈]xkq , xkq + β−1tkqd
kq [ such that

−β−1tkq⟨∇f(zkq), dkq⟩ < −αβ−1tkq⟨∇f(xkq), dkq⟩. (3.5)

Since xkq → x, we know that zkq → x as well. Rearranging (3.5) and letting q →∞,
we get

(α− 1)⟨∇f(x), d⟩ ≤ 0

Since α− 1 < 0, this contradicts with the above calculation that ⟨∇f(x), d⟩ < 0. We
have therefore proved that ∇f(x) = 0.

3.3 Gradient Descent Methods

The gradient descent methods refer to the Algorithm 3.1 where the search direction
dk is chosen to be the negative gradient −∇f(xk) for all k ∈ N∪ {0}, since this is the
direction of steepest descent for f from the point xk.

Discussion 3.5. Let us formally observe that−∇f(x) is the steepest descent direction
for f at x in the sense that f ′(x; ·) is minimized (i.e. the most negative) among the
directions d of equal magnitude.

Since the steepest direction dk := −∇f(xk) satisfies (3.3), we can immediately get
the following corollary.

Corollary 3.6. Let (xk) be a sequence generated from Algorithm 3.1 using the gradient
descent direction and the Armijo’s backtracking linesearch rule with parameters α, s, β.
If x ∈ Rn is a limit point of (xk), then ∇f(x) = 0.

The full convergence using the steepest descent direction can be guaranteed under
a rather strong assumption of strong convexity. This can in fact be relaxed by asking
only the Lipschitz continuity of the gradient. We shall postpone to show that strong
convexity of f implies the Lipschitz continuity of the gradient until before showing the
final convergence analysis for strongly convex functions.

The following convergence criteria is quite useful in situations where the Lipschitz
constant L of the gradient ∇f is accessible. Due to the limited applicability regarding
the constant L, we shall just state the result without proof and save the space to prove
another more applicable ones.
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Theorem 3.7. Let f : Rn → R be convex and continuously differentiable with Lips-
chitz continuous gradient with constant L > 0. Suppose that Opt(f) ̸= ∅. Then the
sequence (xk) generated by the gradient descent method under constant step-size rule
with t = 1

L converges to a minimizer of f . Moreover we have the estimate

f(xk)− inf
Rn

f = o(1/k).

In the case when the Lipschitz constant is inaccessible or expensive, we have to
adopt the backtracking linesearch. The convergence analysis for this case relies on the
upper bound of the maximum eigenvalues of the Hessians, derivable from the strong
convexity itself.

For the remaining of this section, suppose that f : U → R is a strongly convex
function (with a constant m > 0) and there exists p ∈ U in which Sf(p) is closed. The
following result implies an existence of M > 0 so that mI ⪯ ∇2f(x) ⪯MI on Sf(p).

Theorem 3.8. There exists M > 0 in which ∇2f(x) ⪯MI for all x ∈ Sf(p).

Proof. Assume to the contrary that for each M > 0, there is yM ∈ Sf(p) such that
∇2f(yM) ̸⪯MI. Take a positive real sequence (Mk) with Mk → +∞ and a sequence
(yk) in Sf(p) with ∇2f(yk) ̸⪯ MkI for each k ∈ N. Then, for each k ∈ N, there exists
uk ∈ Rn ̸= {0} for which

Mku
⊤
k uk − u⊤k∇2f(yk)u)k = u⊤k (MkI −∇2f(yk))uk < 0.

Rearrange the above inequality, use the Cauchy-Schwarz inequality, and then use the
operator norm, we obtain

Mk <
u⊤k∇2f(yk)uk
∥uk∥2

≤ ∥uk∥∥∇
2f(yk)uk∥
∥uk∥2

≤ sup
∥v∥=1

∥∇2f(yk)v∥ = ∥∇2f(yk)∥. (3.6)

Note that Sf(p) is a compact set, ∥ · ∥ and ∇2f are continuous. Hence ∥∇2f(·)∥ is
bounded above on Sf(p). This prevents the right hand side of (3.6) to diverge to
+∞, a contradiction. This guarantees an existence of a constant M > 0 such that
∇2f(x) ⪯MI holds for all x ∈ Sf(p).

We suppose throughout the section that M > 0 is the constant as in the above
theorem. We may derive the following upper quadratic bound result from such ⪯-
bound.

23



Theorem 3.9. The inequality

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
M

2
∥y − x∥2

holds for all x, y ∈ U .

Proof. Similar to Theorem 1.28.

We need one additional estimation for the infimum value for strongly convex func-
tions.

Proposition 3.10. The estimate

1

2M
∥∇f(x)∥2 ≤ f(x)− inf

Rn
f ≤ 1

2m
∥∇f(x)∥2

for all x, y ∈ U .

Proof. Let x ∈ U and put h(y) := f(x) + ∇f(x)⊤(y − x) + m
2 ∥y − x∥2 for y ∈ U .

Then h is quadratic and therefore is minimized at ỹ := x− 1
m∇f(x). We obtain from

Theorem 1.28 that

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
m

2
∥y − x∥2

≥ f(x)− 1

m
∥∇f(x)∥2 + 1

2m
∥∇f(x)∥2

= f(x)− 1

2m
∥∇f(x)∥2.

Taking infimum over all y ∈ U on the left hand side of the above inequality implies

f(x)− inf
Rn

f ≤ 1

2m
∥∇f(x)∥2

The lower bound can be derived similarly using Theorem 3.9.

Proposition 3.11. If f : Rn → R is strongly convex and M > 0 satisfies ∇2f(x) ⪯
MI for all x ∈ Rn, then

⟨∇f(y)−∇f(x), y − x⟩ ≥ 1

M
∥∇f(y)−∇f(x)∥2

for all x, y ∈ Rn.
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Proof. Let x, y ∈ Rn, then we define the functions fx and fy by

fx(z) := f(z)−∇f(x)⊤z and fy(z) := f(z)−∇f(y)⊤z (3.7)

for all z ∈ Rn. Then ∇fx(z) = ∇f(z)−∇f(x) and ∇fy(z) = ∇f(z)−∇f(y). Then
x and y minimizes fx and fy respectively. We further have from Proposition 3.10 that

f(y)− f(x)−∇f(x)⊤(y − x) = fx(y)− fx(x)

≥ 1

2M
∥∇fx(y)∥2

=
1

2M
∥∇f(y)−∇f(x)∥2.

We may similarly obtain that

f(x)− f(y)−∇f(y)⊤(x− y) ≥ 1

2M
∥∇f(y)−∇f(x)∥2.

Adding the two inequalities yields (3.7).

Proposition 3.12. Let f : Rn → R be a strongly convex function and M > 0 satisfies
∇2f(x) ⪯ MI for all x ∈ Rn. Then f has a Lipschitz continuous gradient with
constant M > 0, i.e. the inequality

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

holds for all x, y ∈ Rn.

Proof. Apply the Cauchy-Schwarz inequality to (3.7).

The above result has granted us to use the gradient descent method with constant
step-size as in Theorm 3.7.

New we are in the position to consider the convergence analysis of the gradient
descent methods for strongly convex functions with Armijo’s backtracking linesearch
rule, simpliied to the case s = 1. Notice that the test statement for the backtraking
(3.2) becomes

f(xk + tkd
k) > f(xk)− αt∥∇f(xk)∥2.

Theorem 3.13. Let f : U → R be a strongly convex function such that there is p ∈ U
in which Sf(p) is closed, and let m,M > 0 be constants such that mI ⪯ ∇2f(x) ⪯MI
for all x ∈ Sf(p). Then the sequence (xk), with x0 ∈ Sf(p), generated by the gradient
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descent method under the Armijo’s backtracking linesearch rule with parameters α, s =
1, β is convergent to the unique minimizer x of f . Moreover, we have the estimate

f(xk+1)− inf
Rn

f ≤ (1−min{2αm, 2αβm/M})k
(
f(x0)− inf

Rn
f
)
. (3.8)

Proof. We first claim that the backtracking exit condition

f(xk + tdk) ≤ f(xk)− αt∥∇f(xk)∥2

is satisfied for all 0 ≤ t ≤ 1/M . Notice that if t ∈ [0, 1/M ] then M
2 t

2 ≤ M
2 ·

1
M t = t

2 =
− t

2 + t, finally leads to −t+ M
2 t

2 ≤ − t
2 . From Theorem 3.9, we have

f(xk + tdk) ≤ f(xk)− t∥∇f(xk)∥2 + Mt2

2
∥∇f(xk)∥2

≤ f(xk)− (t/2)∥∇f(xk)∥2

≤ f(xk)− αt∥∇f(xk)∥2

for t ∈ [0, 1/M ]. The claim is thus proved.

At any iterate k, if the exit condition holds at i = 0, then tk = 1 and we have

f(xk+1) = f(xk + tdk) ≤ f(xk)− α∥∇f(xk)∥2.

Otherwise, tk ≥ β/M as we know that β/M < 1/M . This gives

f(xk+1) = f(xk + tkd
k) ≤ f(xk)− α

(
β

M

)
∥∇f(xk)∥2.

Together, we put C := min{α, (αβ)/M} and the estimate concludes into

f(xk+1) ≤ f(xk)− C∥∇f(xk)∥2.

Subtracting both sides with infRn f and applying Proposition 3.10, we get

f(xk+1)− inf
Rn

f ≤
[
f(xk)− inf

Rn
f
]
− C∥∇f(xk)∥2

≤ (1− 2mC)
[
f(xk)− inf

Rn
f
]
.

Continuing inductively, we get

f(xk+1)− inf
Rn

f ≤ (1− 2mC)k
[
f(x0)− inf

Rn
f
]
→ 0,
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since 2mC ∈ (0, 1). This shows that f(xk)→ infRn f .

To see the convergence of (xk), recall that

f(xk+1) ≥ f(x) +∇f(x)⊤(xk+1 − x) +
m

2
∥xk+1 − x∥2.

We thus have xk → x, as desired.

The estimate (3.8) suggests that we may reach a solution within an acceptable
tolorence ε > 0, i.e. f(xk)− infRn f < ε, within at most

log([f(x0)− infRn f ]/ε)

log(1/c)
,

where c := (1 −min{2αm, 2αβm/M}) ∈ (0, 1). From here notice that the situation
min{2αm, 2αβm/M} = 2αm happens if and only if β/M ≥ 1. This is not likely
as β is restricted in the interval (0, 1). Hence, in most cases, one would expect c =
1−2αβ(m/M). The quantity M/m provides a bound for the condition number (ratio
between the widest and thinnest parts) of the sublevel sets of f . If the ratio M/n is
large, then

log(1/c) ≈ 2αβ(m/M).

This further suggests that the required number of iterations changes almost linearly
with the bound of the condition number. For a quadratic function f(x) = x⊤Ax +
b⊤x+ c, the condition number is the ratio λmax/λmin of the matrix A.

Discussion 3.14. Consider a quadratic function f(x1, x2) := x21 + γx22, where γ > 0
is a fixed parameter. Try using programming the gradient descent method and solve
for a minimizer of this function with different values of γ. Note that the condition
number of this function is max{1,γ}

min{1,γ} . Discuss what happens to the required number of
iterations with varying γ’s.

3.4 Conjugate Gradient Methods

In this section, we discuss the conjugate gradient method which was originally
designed to solve a quadratic problem whose Hessian is positive definite. This algo-
rithm has an exceptional performance since a finite convergence is guaranteed, with
its expanding subspace optimization properties.

We may also view that the conjugate gradient is a scheme designed for solving the
linear system

Ax = b
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where A ∈ Rn×n is a symmetric positive definite matrix and b ∈ Rn. As described ear-
lier, this linear system corresponds to the gradient ∇f of the strictly convex quadratic
function

f(x) :=
1

2
x⊤Ax− b⊤x.

This means we may analyze the convergence of the linear conjugate gradient methods
in terms of minimizing f .

Always suppose in this section that A ∈ Rn×n is a summetric postive definite
matrix. A set {p0, · · · , pm} of nonzero vectors in Rn is said to be conjugate w.r.t. A
(or A-conjugate) if

p⊤i Apj = 0 for all i ̸= j.

One may immediately observe that if {p0, · · · , pm} is conjugate w.r.t. A, then it is
linearly independent.

The conjugate direction methods refer to the class of Algorithm 3.1 where dk is
taken from an A-conjugate set {d0, · · · , dn}. The step-size rule is then chosen according
to the exact linesearch rule, explicitly given by

tk :=
(rk)⊤dk

(dk)⊤Adk
(3.9)

where rk := Axk − b is the residual term.

Theorem 3.15. Let (xk) be a seqence generated by the conjugate direction method with
an A-conjugate set {d0, · · · , dn−1}. Then (xk) converges to the minimizer x of f within
n steps. Moreover, xk minimizes f over the affine subspace x0 + span{d0, · · · , dk−1}.

Proof. The A-conjugacy of D := {d0, · · · , dn−1} implies the linear independence of D.
So D spans Rn. Hence we may write x− x0 as

x− x0 = σ0x
0 + · · ·σn−1dn−1 (3.10)

for some σ0, · · · , σn−1 ∈ R. For k = 0, 1, · · · , n − 1}, pre-multiplying (dk)⊤A the
above equation, we have

σk =
(dk)⊤A(x− x0)

(dk)⊤Adk
. (3.11)

If xk is generated from the conjugate direction method, we have

xk = x0 + t0d0 + · · ·+ tk−1dk−1.
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Pre-multiplying with (dk)⊤A gives

(dk)⊤A(xk − x0) = 0,

and hence

(dk)⊤A(x− x0) = (dk)⊤A(x− xk) = (dk)⊤(b− Axk) = −(dk)⊤rk = −(rk)⊤dk.

Substitute this into (3.11), we see that σk = tk, the exact linesearch rule (3.9). In view
of (3.10), we see that xk converges to x within n steps.

The subspace expansion property is left as an exercise.

The above theorem says that if one has a miracle way to generate an A-conjugate
set, then one may solve Ax = b within n steps. One may show that the eigenvectors
of A form an A-conjugate set and can thus be used here. However, the real question
is how to generate such a conjugate set in an inexpensive fashion. The very first, and
perhaps most famous method, is the conjugate gradient method, whose main idea is to
replace the steepest descent direction −∇f(xk) = −rk with −rk + βk+1d

k. Here, the
extra term dk will help breaking the orthogonality in the zig-zag pattern between steps
of the gradient descent by the amount βk+1. This weight βk+1 is chosen precisely so
that dk+1 = −rk+1 + βk+1d

k is A-conjugate to dk, i.e. (dk+1)⊤Adk = 0. We may find
that

βk+1 =
(rk+1)⊤Adk

(dk)⊤Adk
.

Let us now formally state the Conjugate Gradient Algorithm in the following.

Algorithm 3.16. Conjugate Gradient Algorithm.
Initialization:

Pick a start point x0 ∈ Rn.
Set r0 ← Ax0 − b, d0 ← −r0, k ← 0.

While: rk ̸= 0;

tk ← − (rk)⊤dk

(dk)⊤Adk
.

xk+1 ← xk + tkd
k.

rk+1 ← Axk+1 − b.

βk+1 ← (rk+1)⊤Adk

(dk)⊤Adk
.

dk+1 ← −rk+1 + βk+1d
k.

Update k ← k + 1.
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Discussion 3.17. Try to prove the convergence of this scheme by showing that the
generated directions dk is A-conjugate to all the previous directions d0, · · · , dk−1.
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§ 4. Constrained Optimization Problems – Theory

Unless otherwise specified, suppose throughout the chapter that f : Rn → R,
C ⊂ Rn is nonempty, and g : Rn → Rr and h : Rn → Rl. Moreover, always assume
that the functions f, g, h are all continuously differentiable.

We shall study optimality conditions for both a general constrained optimization
problem Opt(f, C) and Opt(f, g, h).

4.1 Optimality Conditions for Abstract Constraints

The natural aim is to relate the local optimalityity with the condition saying that
the objective will increase if one moves around withing the constraint set. Thus we
need first a good notion of allowed directions to travel within the constraint and then
observe the increase through the directional derivatives along such directions.

Definition 4.1. At a fixed position x ∈ C, a direction d ∈ Rn is called feasible at x
w.r.t. C if there is t > 0 such that x+ td ∈ C for all t ∈ (0, t). If the context of x and
C is clear, we only say that d is a feasible direction.

Example 4.2. Let us see some important simple examples.

• If C has an interior point x, then any vector d ∈ Rn is a feasible direction at x.

• If C is convex and x ∈ C, then d ∈ Rn is a feasible direction if and only if d = t(y−x)
for some t > 0 and y ∈ C.

The concept of a feasible direction seems to work fine in the above examples. This
is because the vicinity of such point x is locally convex. One may observe, instead, the
following example where there is no feasible directions at all feasible points.

Example 4.3. Let C be the unit circle in Rs and x ∈ C. Then the only feasible
direction at x is the zero vector.

Looking at this example, one may employ the idea of differential geometry where
traveling along a curve has a direction that is only tangent to the curve. Such a
direction does not lie necessarily over the curve if one goes straightly along.
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Definition 4.4. Let x ∈ C. A direction d ∈ Rn is said to be tangent to the set C at x
if there is a sequence (zn) in C converging to x and a sequence (tn) of positive scalars
converging to 0 such that

xn − x

tn
→ d.

The set of all directions tangent to C at x is called a tangent cone to C at x, denoted
by TC(x).

Example 4.5. Let C be the unit circle in Rs and x ∈ C. Then the TC(x) is the
directions along the tangent line to C at x.

Example 4.6. Let f : R → R be a function defined by f(x) :=
√
|x| for all x ∈ R,

and define C := epi f = {(x1, x2) ∈ R2 |x2 ≥ f(x1)}. Then what is TC(0, 0) ?

Example 4.7. Let f : R → R be a function defined by f(x) := max{arctan(x), 0}
for all x ∈ R, and define C := epi f = {(x1, x2) ∈ R2 |x2 ≥ f(x1)}. Then what is
TC(0, 0) ?

We will see that if C is convex, then the tangency concept is redundant and we
may rebound ourselves to the feasible directions.

Theorem 4.8. (FO-NOC) Let x be a local solution of Opt(f, C), where f is contin-
uously differentiable, then

⟨∇f(x), d⟩ ≥ 0 for all d ∈ TC(x).

If, in addition, C is convex, then the above inequality is equivalent to

⟨∇f(x), y − x⟩ ≥ 0 for all y ∈ C. (4.1)

Proof. Local optimality of x means f(x) − f(x) ≥ 0 for all x in a neighborhood
of x. Let x be any point in such a neighborhood. Using the Landau’s approach to
Fréchet derivative, we have f(x)− f(x) ≤ ⟨∇f(x), x− x⟩+ o(∥x− x∥). Then we get
−⟨∇f(x), x− x⟩ ≤ o(∥x− x∥). The remaining of the proof is left as an exercise.

Again, to obtain sufficiency, we assume that f is convex.

Theorem 4.9 (SOC). Assume that f and C are both convex and f is continuously
differentiable. If x ∈ C satisfies (4.1), then x ∈ Opt(f, C).

Proof. The result follows directly from the subgradient inequality (1.2).
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The inequality (4.1) is known in the literature as the variational inequality (VI)
associated to ∇f over C. There is a huge literature on VI associated to different types
of mappings for different purposes and applications, e.g. economics, game theory, and
PDEs.

4.2 KKT Conditions for Equality and Inequality Constraints

In this section, we derive optimality conditions for the constrained optimization
problem that takes the form Opt(f, g, h). With the special structure of C, we may
rewrite the optimality condition by exploiting the gradients of all the functions in-
volved, namely ∇f , ∇gi, and ∇hj for i = 1, · · · , r and j = 1, · · · , l.

We first introduce the condition that will be used as our optimality criteria.

Definition 4.10. Consider the problem Opt(f, g, h). A feasible point x ∈ Rn is said to
satisfy the Karush-Kuhn-Tucker condition (briefly, the KKT condition) if there exist
scalars, called Lagrange multipliers, λ1, · · · , λr ≥ 0 and µ1, · · · , µl ∈ R such that ∇f(x) +

∑r
i=1 λi∇gi(x) +

∑l
j=1 µj∇hj(x) = 0,

λigi(x) = 0 for all i = 1, · · · , r.

For any i = 1, · · · , r and j = 1, · · · , l, the multipliers λi and µj are said to be
associated to the constraint gi and hj, respectively.

Definition 4.11. Consider the problem Opt(f, g, h). An inequality constraint gi(x) ≤
0 is said to be active at a point x ∈ Rn if gi(x) = 0. The active inequality index set
at x is then defined by

A(x) :=
{
i ∈ {1, · · · , r} | gi(x) = 0

}
.

Naturally, it is to be understood that all the equatlity constraints are active, if they
are satisfied. The intuition behind an activity of a constraint at a certain point x is
as follows: when a constraint is satisfied as an equality, it is at risk of being violated
if the point x is moved or inaccurately approximated ever so slightly.

Looking back to the second hypothesis of the KKT condition. It implies that λi = 0
whenever the constraint gi is inactive. Hence the summation in the first hypothesis of
the KKT condition can be reduced only to the active constraints. It simply states that
the steepest descent direction of f at x (i.e. −∇f(x)) is only in the (cofnditioned)
linear combination of gradients of the active constraints which is infeasible.
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Definition 4.12. A x be a feasible point of the problem Opt(f, g, h) is said to satisfy
the Linear Independence Constraint Qualification (briefly LICQ) if the gradients of
all active constraints are linearly independent, i.e. the set {∇gi(x) | i ∈ A(x)} ∪
{∇h1(x), · · · ,∇hl(x)} is linearly independent.

The following theorem gives the general necessary optimality condition for general
problem Opt(f, g, h) under LICQ. The proof of this theorem is lengthy and will be left
to the interested readers. However, the proofs will be provided for some specific cases
or variants of this theorem in subsequent sections.

Theorem 4.13 (General KKT Necessary Optimality Conditions with LICQ). Suppose
that x is a local solution of Opt(f, g, h), where f, g, h are all continuously differentiable,
and that LICQ holds at this point. Then x satisfies the KKT condition.

The KKT condition can be tricky to use sometimes as it depends also on how well
an optimization problem is formulated. Let us illustrate this through the following
example.

Example 4.14. Consider the problems

min x1 + x2
s.t. x21 + x22 = 1.

(4.2)

and
min x1 + x2
s.t. (x21 + x22 − 1)2 = 0.

(4.3)

We observe first that the two problem (4.2) and (4.3) are equivalent in the sense that
the objective functions feasible sets are the same. Observe what happens when one
apply the KKT condition ?

4.3 KKT Conditions for Inequality Constraints

The KKT necessary condition can be simplified if the equality consitraint is not
presented. The proof is also much less complicated in this case.

To fix the idea, we consider in this section an optimization problem of the form{
min f(x)

s.t. gi(x) ≤ 0 ∀i = 1, · · · , r,
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where all f, g1, · · · , gr are continuously differentiable over Rn. For convenience, the
above problem will be referred to as Opt(f, g).

To deliver the KKT condition for the above problem, we need to derive a prelimi-
nary form of the KKT condition, known as the Fritz-John condition, from the Gordan’s
theorem.

Theorem 4.15 (Gordan’s Alternative Theorem). Let A ∈ Rm×n. Then exactly one
of the following two systems has a solution:

A. Ax < 0.

B. p ̸= 0, A⊤p = 0, p ≥ 0.

Theorem 4.16 (Fritz-John conditions). Let x ∈ LOpt(f, g). Then there exist multi-
pliers λ0, λ1, · · · , λr ≥ 0, which are not all zero, satisfying{

λ0∇f(x) +
∑r

i=1 λi∇gi(x) = 0,

λigi(x) = 0 for all i = 1, · · · , r.

Proof. First, we claim that there is no d ∈ Rn such that ⟨∇f(x), d⟩ < 0 and for all
i ∈ A(x), ⟨∇gi(x), d⟩ < 0. Indeed, if there is such d ∈ Rn, then for t > 0 sufficiently
small, we get f(x+ td) < f(x) and gi(x+ td) < 0 for all i = 1, · · · , r. This contradicts
with the hypothesis that x ∈ LOpt(f, g).

Writing A(x) = {i1, · · · , ik} and put A = [∇f(x)∇gi1(x) · · · ∇gik(x)]⊤, the con-
ditions of the claim becomes Ad < 0. Since this system has no solution, the Gordan’s
Alternative Theorem implies the existence of λ̂ := (λ0, λi1, · · · , λik) ̸= 0 such that
A⊤λ̂ = 0 and λ̂ ≥ 0. This is the same as λ0∇f(x) +

∑
i∈A(x) λi∇gi(x) = 0,

λigi(x) = 0 for all i ∈ A(x).

The conclusion follows by letting λi := 0 for i ̸∈ A(x).

A major downside of the Fritz-John condition is the multiplier λ0 associated to
the objective function f which is legal to be 0. When this happens, the Fritz-John
condition reduces to the linear dependence of ∇gi(x) without any information of f .
Hence, there can be way too many points that satisfy the Fritz-John condition without
being optimal. This, again, leads to the LICQ condition that would then force λ0 ̸= 0
and finally the KKT condition.
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Theorem 4.17 (KKT Necessary Optimality Conditions for Inequality Constraints
with LICQ). Suppose that x is a local solution of Opt(f, g) and that LICQ holds at this
point. Then there exist multipliers λ1, · · · , λr ≥ 0, which are not all zero, satisfying{ ∇f(x) +∑r

i=1 λi∇gi(x) = 0,

λigi(x) = 0 for all i = 1, · · · , r.

Proof. We know the Fritz-John condition holds at x, hencee there exist multipliers
λ̂0, λ̂1, · · · , λ̂m ≥ 0, which are not all zero, satisfying λ̂0∇f(x) +

∑r
i=1 λ̂i∇gi(x) = 0,

λ̂igi(x) = 0 for all i = 1, · · · , r.
(4.4)

If λ̂0 = 0, then
∑r

i=1 λ̂i∇gi(x) = 0. Since λ̂i’s are not all zero, the gradients ∇gi(x)’s
are linearly dependent. This contradicts our hypothesis, so λ̂0 ̸= 0. Dividing by λ̂0 in
all equations of (4.4) gives the desired KKT condition with λi := λ̂i/λ̂0.

We have no doubt in the requirement of the LICQ but this CQ is rather quite
technical than being practical. It turns out that we may deduce a more practical CQ
when all the functional constraints are convex.

Theorem 4.18 (KKT Necessary Optimality Conditions for Convex Inequality Con-
straints with Slater’s CQ). Suppose that x is a local solution of Opt(f, g), where
g1, · · · , gr are all convex, and that the Slater’s CQ (i.e. there is a point x̂ ∈ Rn

in which no constraints are active) holds at this point. Then there exist multipliers
λ1, · · · , λr ≥ 0, which are not all zero, satisfying{ ∇f(x) +∑r

i=1 λi∇gi(x) = 0,

λigi(x) = 0 for all i = 1, · · · , r.

Proof. Once again, the proof relies on the Fritz-John condition. We know that there
exist multipliers λ̂0, λ̂1, · · · , λ̂m ≥ 0, which are not all zero, satisfying λ̂0∇f(x) +

∑r
i=1 λ̂i∇gi(x) = 0,

λ̂igi(x) = 0 for all i = 1, · · · , r.
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Let us assume that λ̂0 = 0, which implies
∑r

i=1 λ̂i∇gi(x) = 0. The Slater’s CQ
and the subgradient inequality then gives

0 >
r∑

i=1

λ̂igi(x̂) ≥
r∑

i=1

λ̂igi(x) +

〈
r∑

i=1

λ̂i∇gi(x), x̂− x

〉
= 0,

which is absurd. Therefore λ̂0 ̸= 0 and the rest of the proof is similar to the previous
theorem.

4.4 KKT Conditions for Linear Constraints

When all gi’s and hj’s are all affine, then no CQ’s are required. The discussion of
this section will be taken for an optimization of the form

min f(x)

s.t. a⊤i x ≤ bi ∀i = 1, · · · , r,
c⊤j x = dj ∀j = 1, · · · , l,

(4.5)

where f is continuously differentiable, ai, cj ∈ Rn, and bi, dj ∈ R for all i = 1, · · · , r
and j = 1, · · · , l.

We shall prove the KKT conditions for the above problem without equality con-
straints first. For this, we need another alternative theorem.

Theorem 4.19 (Farkas’ Alternative Theorem). Let A ∈ Rm×n and c ∈ Rn. Then
exactly one of the following systems has a solution:

A. Ax ≤ 0, c⊤x > 0.

B. A⊤y = c, y ≥ 0.

Theorem 4.20 (KKT Necessary Optimality Conditions for linear inequality con-
straints). Let x be a local solution of the problem{

min f(x)

s.t. a⊤i x ≤ bi ∀i = 1, · · · , r,

where f is continuously differentiable, ai ∈ Rn, and bi ∈ R for each i = 1, · · · , r.
Then there exist multipliers λ1, · · · , λr ≥ 0 such that{ ∇f(x) +∑r

i=1 λiai = 0,

λi(a
⊤
i x− bi) = 0 for all i = 1, · · · , r.
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Proof. Observe first that the constraint set for the problem under consideration is
convex. Hence the variational inequality

⟨∇f(x), x− x⟩ ≥ 0

holds true for any x ∈ Rn satisfying the constraints. Making a change of the variables
y = x− x, we obtain ∇f(x)⊤y ≥ 0 for all y ∈ Rn satisfying

a⊤i (y + x) ≤ bi (4.6)

for i = 1, · · · , r. Note that the above inequality becomes a⊤i y ≤ 0 for i ∈ A(x).
We claim that the following implication holds:

a⊤i y ≤ 0 (∀i ∈ A(x)) =⇒ ∇f(x)⊤y ≥ 0,

i.e. the inactive constraints are superfluous. Let y ∈ Rn satisfies a⊤i y ≤ 0 for all
i ∈ A(x). Since bi − a⊤i x > 0 for all i ̸∈ A(x), there exists α > 0 sufficiently small so
that a⊤i (αy) ≤ bi−a⊤i for all i ̸∈ A(x). We also have a⊤i (αy) ≤ 0 for all i ∈ A(x). This
means (4.6) holds for αy, and thus ∇f(x)⊤(αy) ≥ 0. Finally we have ∇f(x)⊤y ≥ 0
so that the claim is proved.

If we put A(x) := {i1, · · · , ik} and A := [ai1 · · · aik]⊤, then the claim says that
the system Ax ≤ 0 with −∇f(x)⊤x > 0 has no solution. In view of the Farkas’
Alternative Theorem, there exists λi1, · · · , λik ≥ 0 such that

∑k
j=1 λijaij = −∇f(x).

Letting λi := 0 for i ̸∈ A(x), we arrived at the desired conclusion.

The KKT conditions for the full linearly constrained problem (4.5) can be deduced
directly from the above results for problems with only linear inequality constraints.

Theorem 4.21 (KKT Necessary Optimality Conditions for linear inequality and
equality constraints). Let x be a local solution of the problem described by (4.5). Then
there exist multipliers λ1, · · · , λr ≥ 0 and µ1, · · · , µl ∈ R such that ∇f(x) +

∑r
i=1 λiai +

∑l
j=1 µjcj = 0,

λi(a
⊤
i x− bi) = 0 for all i = 1, · · · , r.

Proof. Derive the required prove from Theorem 4.20.

Discussion 4.22. Notice that the proof of the KKT Necessary Condition for the full
linear constraints can be derived by applying the KKT result for the problems with
only linear inequality constraints. What makes this technique inapplicable for problems
with nonlinear constraints (e.g. Theorem 4.13 from Theorem 4.17)?
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4.5 Sufficiency of KKT Conditions under Convexity

When all the ingredients of the problem Opt(f, g, h) are convex (i.e. Convex Pro-
gram: CP) and continuously differentiable , the KKT conditions are sufficient to guar-
antee the optimality.

Theorem 4.23. Let x be a feasible point of the problem Opt(f, g, h) where f and gi’s
are all convex continuously differentiable, and hj’s are all affine. If x is a KKT point,
then x ∈ Opt(f, g, h).

Proof. Suppose that λ1, · · · , λr ≥ 0 and µ1, · · · , µl ∈ R are multipliers satisfying
the KKT conditions at x. Note that the function L(x) := f(x) +

∑r
i=1 λigi(x) +∑l

j=1 µjhj(x), defined for x ∈ Rn, is convex. Moreover, the hypothesis that x is a
KKT point implies that ∇L(x) = 0. This means x minimizes L over Rn. Using
complementarity condition of a KKT point, it follows that

f(x) ≤ L(x) ≤ L(x) = f(x) +
r∑

i=1

λigi(x) +
l∑

j=1

µjhj(x) ≤ f(x)

for any feasible point x. Hence we get x ∈ Opt(f, g, h).

It is noteworthy that eventhough the convexity provides sufficiency of an optimal
point through the lens of the KKT conditions, the necessity still relies on good CQs.
The only exceptional case where no CQs are needed is when f is convex while gi’s and
hj’s are affine.

We may conclude some important points here: (1) Under the Slater’s CQ, Con-
vex Program is equivalent to its KKT system, and (2) the Linear Program (LP) is
equivalent to its KKT system unconditionally.

4.6 Linear Programs and Duality

Let us briefly discuss about a Linear Program (LP), which refers to the problem
Opt(f, g) where f is linear and gi’s are all affine. Due to the equivalence of the LP and
its KKT system, we know that a solution of an LP exists if and only if the multipliers
exist in the corresponding KKT system.

Suppose that f = ⟨c, ·⟩ and gi = ⟨ai, ·⟩ − bi for c, a1, · · · , ar ∈ Rn and b1, · · · , br ∈
R. Let x be a solution of Opt(f, g), then there exist multipliers y1, · · · , yr ≥ 0 in

39



which
r∑

i=1

yiai = −c (4.7)

and for all i = 1, · · · , r, it holds

yi(⟨ai, x⟩ − bi) = 0. (4.8)

Putting y := (y1, · · · , yr) and b := (b1, · · · , br), the above KKT condition leads to

⟨b, y⟩+ ⟨c, x⟩ = ⟨b, y⟩ −
r∑

i=1

yi⟨ai, x⟩ =
r∑

i=1

yi(bi − ⟨ai, x⟩) = 0,

so that we have
⟨c, x⟩ = ⟨−b, y⟩. (4.9)

Now, if x ∈ Rn is a feasible point of Opt(f, g), then (4.9) gives

⟨c, x⟩ ≥ ⟨−b, y⟩.

On the other hand, if y ∈ Rr satisfies y1, · · · , yr ≥ 0 and
∑r

i=1 yiai = −c, then

⟨b, y⟩+ ⟨c, x⟩ =
r∑

i=1

yi(bi − ⟨ai, x⟩) ≥ 0,

where the last inequality follows from the feasibility of x. This means

⟨c, x⟩ ≥ ⟨−b, y⟩.

Thus, any y ∈ Rr with nonnegative entries that satisfies (4.7) provides a lower bound
to the infimum for Opt(f, g). Moreover, y maximizes ⟨b, ·⟩ over all such y. That is, y
is a solution of the so-called dual problem:

max ⟨−b, y⟩
s.t. ⟨a, y⟩ = −c

yi ≥ 0 for all i = 1, · · · , r,

where a = (a1, · · · , ar). The vector y ∈ Rr is called dual feasible if it satisfies the
constraint of the dual problem.

Let us conclude the observations of this section.
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Theorem 4.24. For any primal feasible point x ∈ Rn and any dual feasible point
y ∈ Rr, we have the weak duality:

⟨c, x⟩ ≤ ⟨−b, y⟩.

Moreover, if x ∈ Rn is primal optimal and y ∈ Rr is dual optimal, then the strong
duality holds:

⟨c, x⟩ = ⟨−b, y⟩.

4.7 Programming packages

Most of the prominent programming languages (e.g. MatLab, Python, Julia, Scilab,
etc.) offers a ready-to-use package for solving Linear Programs (LP) and Lineary
constrained Quadratic Program (LQP). This is, most of the time, sufficient in medium
scale problems. Let us demonstrate the use of such packages via an application of LQP
in binary classification model called Support Vector Machine (SVM).

Discussion 4.25 (Binary classification with Support Vector Machine). Given a data
set {(xi, yi)}i=1,··· ,m, where xi ∈ Rn is the collected data and yi ∈ {−1,+1} is the
binary label of xi into either the class +1 or the other class −1. For convenience,
suppose that x1, · · · , xp belong to the class +1 and xp+1, · · · , xm belong to the class
−1. For the simplicity, suppose that the two classes are separable by a hyperplane, i.e.
there is a linear separator L given by a function

g(·) := ⟨w, ·⟩+ b,

where w ∈ Rn and b ∈ R, satisfying g(xi) > 0 and g(xj) < 0 for all i = 1, · · · , p and
j = p+ 1, · · · ,m.

The aim of the Support Vector Machine (SVM) is to find the best linear separator
in the sense that it produces highest accuracty when generalized to the unseen data.
This means the linear separator must have the margin to the data as large as possible.
Noting that the distance between a given point x ∈ Rn and the plane L defined by the
function g above can be computed by

d(x, L) :=
|⟨w, x⟩+ b|
∥w∥

,

the margin can be computed by

min
i=1,··· ,m

d(xi, L) = min
i=1,··· ,m

|⟨w, xi⟩+ b|
∥w∥

.
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An SVM can then be modeled as an optimization problem
maxw,b

{
mini=1,··· ,m

|⟨w,xi⟩+b|
∥w∥

}
s.t. ⟨w, xi⟩+ b > 0 for all i = 1, · · · , p,
⟨w, xj⟩+ b < 0 for all j = p+ 1, · · · ,m.

The objective function of the above model is hard to solve. We shall reduce it finally
to a LQP.

Note first that if (w, b) is a solution of the above optimization problem, then so is
(λw, λb) for any λ > 0. This means there is a solution (w, b) in which

min
i=1,··· ,m

|⟨w, xi⟩+ b| = 1.

This does not change anything to the aim of an SVM model. Moreover, this condition
implies that the constraints can be improved. The new formulation reads

maxw,b ∥w∥−1

s.t. mini=1,··· ,m |⟨w, xi⟩+ b| = 1

⟨w, xi⟩+ b ≥ 1 for all i = 1, · · · , p,
⟨w, xj⟩+ b ≤ −1 for all j = p+ 1, · · · ,m.

We may then equivalently write max ∥w∥−1 as min 1
2∥w∥

2 and also notice that the
condition mini=1,··· ,m |⟨w, xi⟩ + b| = 1 can be dropped from the above formulation.
This is because if mini=1,··· ,m |⟨w, xi⟩+ b| > 1 holds at a feasible point (w, b), then the
constraints are not active and we may improve the objective value by choosing (λw, λb)
with λ := (mini=1,··· ,m |⟨w, xi⟩+ b|)−1. Hence, the model for an SVM becomes

minw,b
1
2∥w∥

2

s.t. ⟨w, xi⟩+ b ≥ 1 for all i = 1, · · · , p,
⟨w, xj⟩+ b ≤ −1 for all j = p+ 1, · · · ,m,

which is now an LQP.
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§ 5. Constrained Optimization Problems – Algorithms

In this chapter, we shall study some approaches to solve a constrained optimization
problem numerically. The first and most naive approach is to modify the gradient
descent algorithm using the projection operator to pull the infeasible update onto the
constraint set.

5.1 Projected Gradient Algorithms

The projected gradient algorithm (or gradient projection algorithm) is a modifica-
tion of the gradient descent algorithm that extends to any constrained optimziation
problem whose constraint set is closed and convex.

Before we can officially state the algorithm, we first need to define a metric projec-
tion and study some of its properties.

Proposition 5.1. Let C ⊂ Rn be a nonempty set, x ∈ Rn, and define dx(·) :=
1
2∥ · −x∥

2. The following statements hold.

(i) If C is closed, then dx attains a minimizer over C.

(ii) If C is convex, then dx has at most one minimizer over C.

Proof. (i) Note that dx is strongly convex so that its level sets are bounded. Since dx
is bounded below, a minimizer over C of dx belongs to Sα ∩C, for some α ∈ R, which
is compact by the closedness of C. The Weierstraß theorem 1.6 ensures the existence
of a minimizer over C.

(ii) Suppose that dx has two distinct minimizers u and v over C. The strict con-
vexity of dx implies that 1

2u + 1
2v ∈ C but dx(12u + 1

2v) <
1
2dx(u) +

1
2dx(v) = infC dx,

which is a contradiction. Therefore dx has at most one minimizer over C.

The above proposition guarantees that if C ⊂ Rn is nonempty, closed, and convex,
then dx has a unique minimizer over C for any x ∈ Rn. This leads to the definition of
a metric projection onto the set C.
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Definition 5.2. Let C ⊂ Rn be nonempty, closed, and convex. Then the metric
projection over the set C is the map PC : Rn → C given by

PC(x) := argmin
u∈C

1

2
∥u− x∥2

for all x ∈ Rn.

The following theorem gives a geometric characterization for a metric projection
operator.

Theorem 5.3. Let C ⊂ Rn be nonempty, closed, and convex. Let x ∈ Rn and z ∈ C,
then z = PC(x) if and only if the inequaltiy

⟨x− z, y − z⟩ ≤ 0 (5.1)

for all y ∈ C.

Proof. Since finding the projection is a convex optimization problem, so its solution
z = PC can be characterized by a variational inequality ⟨∇f(z), y− z⟩ ≥ 0 for all y ∈
C, where f(u) := 1

2∥u− x∥2. Since ∇f(u) = u− x for all u ∈ Rn, the aforementioned
variational inequality becomes (5.1).

The above characterization also implies the Lipschitz continuity of a metric pro-
jection.

Proposition 5.4. Let C ⊂ Rn be nonempty, closed, convex. Then PC is nonexpansive,
i.e. Lipchitz continuous with constant L = 1.

Proof. Take any x, y ∈ Rn. Then (5.1) gives

⟨x− PC(x), PC(y)− PC(x)⟩ ≤ 0

and
⟨y − PC(y), PC(x)− PC(y)⟩ ≤ 0.

Adding both inequalities, we obtain

⟨(x− y) + (PC(y)− PC(x)), PC(y)− PC(x)⟩ ≤ 0,

which can be rearranged into

∥PC(y)− PC(x)∥2 ≤ ⟨y − x, PC(y)− PC(x)⟩
≤ ∥y − x∥∥PC(y)− PC(x)∥.

The result is thus proved.
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With the help of Theorem 5.3, we may further reformulate a variational inequality
as a fixed point equation associated to the operator u 7→ PC(u− σ∇f(u)).

Lemma 5.5. Let C ⊂ Rn be closed and convex, and f : Rn → R a differentiable
function. Let σ > 0. Then x solves the variational inequality ⟨∇f(x), y − x⟩ ≥ 0 for
all y ∈ C if and only if x = PC(x− σ∇f(x)).

Proof. Using Theorem 5.3, x = PC(x− s∇f(x)) if and only if

⟨(x− s∇f(x))− x, y − x⟩ ≤ 0

for all y ∈ C, which is equivalent to the required variational inequality.

Now we are ready to state and give a convergence analysis of the Projected Gradient
Algorithm.

Algorithm 5.6. Projected Gradient Algorithm.
Initialization:

Pick a start point x0 ∈ Rn and an unconstrained descent step length σ > 0.
Set k ← 0.

While: k = 0 or ∥dk∥ ≠ 0;
yk ← PC(x

k − σ∇f(xk)).
dk ← yk − xk.
Determine the step-size according to the Armijo linesearch tk = βi (i.e. s = 0),

where i ∈ N ∪ {0} is the smallest integer satisfying (3.1).
xk+1 ← xk + tkd

k.
Update k ← k + 1.

Let us emphasize again on the Armijo linesearch rule.

Discussion 5.7. Notice that the Armijo linesearch rule needs a new consideration
here, since the earlier proof of its well-definedness requires the direction dk to be a
descent direction, i.e. ⟨∇f(xk), dk⟩ < 0. In fact, it can be shown that such condition
holds, thanks to Theorem 5.3.

Theorem 5.8. Let C ⊂ Rn be nonempty, closed, and convex, and f : Rn → R a
differentiable function. Let (xk) be a sequence generated by the Projected Gradient
Algorithm described above. If x is a limit point of the sequence (xk), then it satisfies
the variational inequality (4.1).
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Proof. Suppose that (xk) is an infinite sequence. This means dk and ∇f(xk) are
nonzero for all k ∈ N. The Armijo’s linesearch rule implies that

f(xk)− f(xk+1) = f(xk)− f(xk + tkd
k) ≥ −αtk⟨∇f(xk), dk⟩. (5.2)

Let x ∈ C be a limit point of (xk) and choose a subsequence (xkq) of (xk) so that
limq x

kq = x. In the above inequality, we see that the right hand side is strictly
positive since ∇f(xk) and dk are nonzero and dk is a descent direction by Discussion
5.7. This means (f(xk)) is decreasing and converges to some f ∗ ∈ R. Moreover, since
f is continuous, we know that f ∗ = limq f(x

kq) = f(x). This implies that the left
hand side of (5.2) tends to 0. This further gives

lim
q

tkq⟨∇f(xkq), dkq⟩ = 0. (5.3)

Recall from the definition of yk’s, we may see from the continuity of PC (Proposition
5.4) that (ykq) is convergent to some y ∈ C, and so is (dkq). Let d := limq d

kq , we may
see that d = y − x.

We claim that ⟨f(x), d⟩ = 0. In case tkq ̸→ 0, we obtain from (5.3) that ⟨f(x), d⟩ =
0. Otherwise if gkq → 0, Theorem 1.12 implies that there is skq ∈]0, tkq [ in which

f(xkq + tkqd
kq)− f(xk) = ⟨∇f(xkq + tkqd

kq), dkq⟩

for each q ∈ N. Letting q → ∞, we get ⟨f(x), d⟩ = 0 as needed. From this and
Theorem 5.3, we know that

0 ≥ ⟨(x− σ∇f(x))− y, x− y⟩ = σ⟨∇f(x), d⟩+ ∥d∥2 = ∥d∥2,

showing that d = 0 and hence x = y = PC(x − σ∇f(x)). Lemma 5.5 then brings us
to the conclusion of the theorem.

5.2 Duality and Uzawa’s Algorithm

In this section, we consider the constrained optimization problem where the con-
straint set is described by equalities and inequalities. We shall focus on the case where
the optimization problem is described by its KKT system. We shall see in the fol-
lowing that a KKT system provides a duality view of maximizing with respect to the
multipliers against minimizing over the decision variables.
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Let V and M be any two sets. Recall that a pair (u, λ) ∈ V ×M is said to be a
saddle point of a function L : V ×M → R if

inf
v∈V

L(v, λ) = L(u, λ) = sup
µ∈M

L(v, µ).

Notice that the inequality

sup
µ∈M

inf
v∈V

L(v, µ) ≤ inf
v∈V

sup
µ∈M

L(v, µ)

always hold, but the reverse inequality is not true in general. However, it holds at the
saddle point. Indeed, if (u, λ) is a saddle point of L, then

inf
v∈V

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

L(u, µ) = L(u, λ) = inf
v∈V

L(v, λ) ≤ sup
µ∈M

inf
v∈V

L(v, µ).

From this simple observation, we have the following propostion.

Proposition 5.9. If (u, λ) is a saddle point of a function L : V ×M → R, then

sup
µ∈M

inf
v∈V

L(v, µ) = L(u, λ) = inf
v∈V

sup
µ∈M

L(v, µ). (5.4)

Now, we associate with the problem Opt(f, g), where f : Rn → R and g : Rn → Rr,
a Lagrangian function L : Rn × Rr

+ → R given by

L(v, µ) := f(v) +
r∑

i=1

µigi(v) = f(v) + µ⊤g(v).

for (v, µ) ∈ Rn × Rr
+. We next give a relationship between Opt(f, g) and the saddle

points of its Lagragian function.

Theorem 5.10. If (u, λ) ∈ Rn × Rr
+ is a saddle point of the Lagrangian L, then the

point u is feasible and optimal to Opt(f, g).

Proof. Notice that L(u, µ) ≤ L(u, λ) can be expressed as
r∑

i=1

(µi − λi)gi(u) ≤ 0

for all µ ∈ Rr
+. This implies that gi(u) ≤ 0 for all i = 1, · · · , r, showing that u is

feasible. Taking µ = 0 in the above inequality, we get
∑r

i=1 gi(u) ≥ 0. Therefore, we
have

∑r
i=1 λigi(u) = 0. Finally, for any feasible point v ∈ Rn, we have

f(u) = f(u) +
r∑

i=1

λigi(u) = L(u, λ) ≤ L(v, λ) = f(v) +
r∑

i=1

λigi(v) ≤ f(v),

where the last inequality follows from the feasibility of v.
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Theorem 5.11. Suppose that f and gi’s are all convex continuously differentiable
functions, and that LICQ is satisfied for Opt(f, g). If u ∈ Opt(f, g), then there exists
λ ∈ Rr

+ such that (u, λ) is a saddle point of the Lagrangian L.

Proof. Since u ∈ Opt(f, g) and the constraint is qualified with LICQ, there exist
multipliers λ = (λ1, · · · , λr) ∈ Rr

+ satisfying ∇1L(u, λ) = 0 and λigi(u) = 0 for
all i = 1, · · · , r. Since L(·, λ) is convex, it follows that L(u, λ) = infv∈Rn L(v, λ).
Moreover, the feasibility of u and the complementarity condition imply that

L(u, µ) = f(u) +
r∑

i=1

µigi(u) ≤ f(u) = f(u) +
r∑

i=1

λigi(u) = L(u, λ)

for all µ ∈ Rr
+. Hence, (u, λ) is a saddle point of L.

Looking at the above Thoerems 5.10 and 5.11, if a saddle point (u, λ) for the
Lagrangian function can be calculated, then we disgard λ and keep u as the solution
of Opt(f, g) that we are after. In view of Proposition 5.9, the vector λ can be obtained
solving the following maximization problem

max
µ∈Rr

+

q(µ), q(µ) := inf
v∈Rn

L(v, µ).

This problem is known as the dual problem of Opt(f, g), where we now refer to Opt(f, g)
as the primal problem. Likewise, the decision variable for the primal problem is called
primal variable, while the one for the dual problem is called dual variable. Note that
the dual problem may be viewed as a constrained problem over Rr with the constraints
µi ≥ 0 for all i = 1, · · · , r, which can be handled pretty easily. We have the following
result, which follows from the existence of multipliers in the KKT.

Theorem 5.12. Suppose that Opt(f, g) has a solution, where f and gi’s are all convex
continuous differentiable functions. Then L has a saddle point.

The Uzawa’s algorithm is just the Projected Gradient Algorithm applied to the
dual problem in the fashion that: to each dual variable µ ∈ Rr

+, the parametrized
unconstrained problem Opt(L(·, µ)) has a solution uµ ∈ Rn. Then at each iteration
k ∈ N ∪ {0}, the update on the dual variable λk (obtained by the projected steepest
ascent) gives rise to the primal variable uk ∈ Opt(L(·, λk)). As k →∞, we wish that
(uk, λk) would converge to a saddle point of L, or at least uk would converge to a
solution of Opt(f, g).
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The Uzawa’s algorithm is available due to the nice explicit formulae of the pro-
jection P+ := PRr

+
: Rr → Rr

+ and the gradient ∇q of the dual objective function q
when uµ is available for each µ. In particular, we have the following coordinatewise
expressions

P+(ν)i = max{νi, 0} and ∇q(µ)i = gi(uµ)

for each i = 1, · · · , r.

Algorithm 5.13. Uzawa’s Algorithm.
Initialization:

Pick a start point λ0 ∈ Rr
+ and an unconstrained descent step length σ > 0.

Set k ← 0.
While: ∥dk∥ ≠ 0;

uk : Chosen from argminv∈Rn L(·, λk).
λk+1 ← P+(λ

k + σ∇q(λk)),
i.e. λk+1

i = max{0, λk
i + σgi(u

k)} for i = 1, · · · , r.
Update k ← k + 1.

We then consider the convergence of the Uzawa’s algorithm for Opt(f, g) with
linear inequality constraints.

Theorem 5.14. Consider the problem Opt(f, g) such that f is α-strongly convex and
g(v) = Av − b for each v ∈ Rn, where A ∈ Rr×n and b ∈ Rr. Suppose that the con-
straint set in nonempty and σ ∈ (0, 2α/∥A∥2). Then the sequence (uk) generated from
the Uzawa’s algorithm is convergent to the unique solution of Opt(f, g). Moreover, if
rank(A) = r, then (λk) also converges to the unique solution of the dual problem.

Proof. Note first that Opt(f, g) is the problem of minimizing a strongly convex function
over a closed convex set, hence it has a unique solution, denoted with u. Moreover, for
each µ ∈ Rr

+, L(·, µ) is also strongly convex so that uµ exists and is unique. According
to Theorem 5.11, there is λ ∈ Rr

+ in which (u, λ) is a saddle point of L. Hence we
have

∇1L(u, λ) = ∇f(u) + A⊤λ = 0

since L(u, λ) = infv∈Rn L(v, λ), and also

⟨g(u), µ− λ⟩ ≤ 0 (∀µ ∈ Rr
+)

since L(u, λ) = supµ∈Rr
+
L(u, µ). The latter inequality is equivalent to

⟨(λ+ σg(u))− λ, µ− λ⟩ ≤ 0
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for all µ ∈ Rr
+ and any fixed σ > 0. Hence, the saddle condition is equivalent to the

system {
∇f(u) + A⊤λ = 0,

λ = P+(λ+ σg(u)).

Let k ∈ N ∪ {0}. With similar calculation applied to uk and λk+1, we analogously
obtain {

∇f(uk) + A⊤λk = 0,

λk+1 = P+(λ
k + σg(uk)).

(5.5)

Combining the two systems and using the nonexpansivity of P+, we get{
∇f(uk)−∇f(u) + A⊤(λk − λ) = 0,

∥λk+1 − λ∥ ≤ ∥λk − λ+ σA(uk − u)∥.

From the above system, the Apollonius identity, the Cauchy-Schwarz inequality, and
α-strong monotonicity of ∇f , we get

∥λk+1 − λ∥2 ≤ ∥λk − λ∥+ 2σ⟨A⊤(λk − λ), uk − u⟩+ σ2∥A(uk − u)∥2

≤ ∥λk − λ∥ − 2σ⟨∇f(uk)−∇f(u), uk − u⟩+ σ2∥A∥2∥A(uk − u)∥2

≤ ∥λk − λ∥ − 2σα∥uk − u∥2 + σ2∥A∥2∥A(uk − u)∥2

= ∥λk − λ∥ − σ(2α− σ∥A∥2)∥A(uk − u)∥2. (5.6)

Since σ ∈
(
0, 2α
∥A∥2

)
, the above inequality reduces to ∥λk+1 − λ∥ ≤ ∥λk − λ∥. This

means (∥λk − λ∥) is decreasing and bounded below, so it is convergent. Rearranging
(5.6), we obtain

σ(2α− σ∥A∥2)∥A(uk − u)∥2 ≤ ∥λk − λ∥ − ∥λk+1 − λ∥2.

Letting k → ∞, the right hand side goes to 0 and we obtain the desired convergence
uk → u.

Next, we show that (λk) is convergent when rank(A) = r. Since rank(A) =
rank(A) = rank(A⊤) = r if and only if the linear system

A⊤ν = b (5.7)

has a unique solution (in ν) for any b ∈ Rn. For b = −∇f(u), the unique solution
is the dual optimum point λ. Now, since (λk) is bounded, it possesses a convergent
subsequence (λkq) with a limit λ′ ∈ Rr

+. From (5.5), we have ∇f(ukq) + A⊤λkq = 0.
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Letting q → ∞, we obtain ∇f(u) + A⊤λ′ = 0. Since (5.7) has a unique solution, it
must be the case that λ′ = λ. Since this process can be repeated with any subsequence
of (λk), the entire sequence (λk) is convergent to λ.

It should be observed that we need to solve a minimization problem at each iterate
k to obtain uk. This can be a little uncomfortable, but at least this subproblem is
unconstrained. Moreover, since the problem at hand is a convex program, this reduces
to finding a critical point. In particular, when f(v) = 1

2v
⊤Cv− d⊤v is strictly convex,

the point uk can be obtained by solving the linear system Cv − d+ A⊤λk = 0.

Discussion 5.15. Derive the Uzawa’s algorithm for a strongly convex program with
linear inequality and equality constraints. Can we guarantee the convergence?

Discussion 5.16. Apply the Uzawa’s algorithm to obtain the optimal separating hy-
perplane in the SVM model, as discussed in Discussion 4.25.
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