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1. What is Linear Algebra all about?

Linear Algebra is a spin-off subject from the study of Linear Systems (or
System of Linear Equations) through generalizations and re-interpretations.

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
amnx1 + · · ·+ amnxn = bm

⇐⇒

[
a11 · · · a1n
...

. . .
...

amn · · · amn

][
x1

...
xn

]
=

[
b1
...

bm

]
⇐⇒ Ax = b.

In the above figure, we may observe a differnt view from a linear system into
a simple matrix equation. This gives a new interpretation; instead of find-
ing x that solves an equation, we find a vector x that is transformed (by a
transformation A) into a new vector b.

In the first half of the course, we focus on the matrix equation Ax = b and
go through different approaches to characterize its solution. The topics include

• Solving Ax = b by Gauss-Jordan method.

• Solutions of Ax = b characterized by rank(A).

• Determinant and its use in the equation Ax = b.

• Vector spaces, subspaces, and dimension. This part is mainly used
to describe the solution set of Ax = b.

• Linear transformation. This part gives a new perspective to the
matrix equation Ax = b.

The second half focuses on more advanced topics that revolves around repre-
sentation of matrices in different bases. One of the most applied basis is the
eigenbasis, which allows useful decomposition for faster matrix computation in
modern GPUs. Moreover, we speak of geometric sides of linear algebra as well
as some of its applications. The second half would cover

• Canonical forms. This allows representation of a matrix directly
in the chosen basis.

• Eigenvalues and associated eigenvectors/eigenspace. Eigenbasis.

• Diagonalization. This is one of the decomposition methods that
allows for fast computation in modern computers.
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• Similar matrices.

• Norms. Orthogonality. Quadratic forms. We explore geometric aspects
of linear algebra here.

• Some applications.

1.1 Matrix algebra: a quick review

Let us give a quick summary of elementary matrix algebra. Recall first that
a matrix is an array of numbers listed as a tableau as follows

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .

This matrix is said to have dimension of m × n, i.e. having m rows and n
columns. The ith row of this matrix is the array[

ai1 ai2 · · · ain
]
,

while the jth column is the array 
a1j
a2j
...

amj

 .

In this course, matrices are usually presented with capital roman alphabets
A,B,C, · · · , etc.

The anotomy of a matrix.
The following illustration depicts the ith row and jth column of a matrix:

ith row→


· · · · · ·
...

... . . . ...
ai1 ai2 · · · ain
...

... . . . ...
· · · · · ·



· · · · a1j · · · ·
· · · · a2j · · · ·
... . . . ... . . . ...
· · amj · ·


↑

jth column
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Let us consider some special classes of matrices now.

Vectors.
A matrix that has a single column (i.e. of dimension n × 1) is called a
column vector. Likewise, a matrix that has a single row (i.e. of dimension
1× n) is called a row vector. In this course, we use the simple term vector
to refer to a column vector. Vectors in this course are usually presented
with lower-case letters like a, b, c, · · · or more often with x, y, u, v, · · · ,etc.
To save up spaces, a column vector x (with n entries) is usually written also
as x = (x1, · · · , xn). Hence, writting

x = (x1, · · · , xn)

is the same as

x =

x1
...
xn

 .

Square matrices.
A square matrix is the one having equal rows and columns. Let A = [aij]n×n

be an n × n square matrix. The diagonal of A refers to the elements
a11, a22, · · · , ann, as shown on the following figure:

a11 · · · · ·
· a22 · · · ·
...

... . . . ...
· · · · · ann


↖

diagonal of A
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A diagonal matrix is a square matrix whose nonzero entries are only on
its diagonal. If the elements along the diagonal are d1, d2, · · · , dn, then
we write diag(d1, · · · , dn) to denote such a diagonal matrix, that is

diag(d1, · · · , dn) =


d1 0

d2
. . .

0 dn

 .

The identity matrix of dimension n× n is the matrix I given by

I = diag(1, · · · , 1︸ ︷︷ ︸
n times

) =

1 0
. . .

0 1


n×n

A matrix A is said to be an upper triangular matrix if all the en-
tries below its diagonal are all 0. Likewise, it is said to be a
lower triangular matrix if all the entries above its diagonal are all 0.
The following figure illustrates, respectively, an upper triangular matrix
and a lower triangular matrix:a11 ∗

. . .
0 ann


a11 0

. . .
∗ ann


We simply say that A is a triangular matrix if it is either an upper or a
lower triangular matrix.
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Let us now turn to algebraic operations of matricecs.

Transposition.
Suppose that A is an m× n matrix given by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 = [aij]m×n.

The transpose of A, written as AT , is an n×m matrix defined by

AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

... . . . ...
a1n a2n · · · anm

 = [aji]n×m.

It is clear that (AT )T = A.

A matrix A is said to be symmetric if AT = A. Of course, every symmetric
matrix is a square matrix.

Scalar multiplication.
We can multiply a scalar (a constant) to a matrix in a componentwise
fashion. Let c ∈ R be a scalar and A = [aij]m×n a matrix. Then the
multiplication of c with A, written cA, is defined by

cA = [caij]m×n =


ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n

...
... . . . ...

cam1 cam2 · · · camn

 .

If c = −1, then we write −A = (−1)A.
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Matrix addition and subtraction.
Adding/subtracting two or more matrices, all of them need to have the same
dimension. Let A = [aij]m×n and B = [bij]m×n be any two matrices. Then
A±B is defined componentwise, that is

A±B = [aij ± bij]m×n =


a11 ± b11 a12 ± b12 · · · a1n + b1n
a21 ± b21 a22 ± b22 · · · a2n + b2n

...
... . . . ...

am1 ± bm1 am2 ± b22 · · · amn + bmn

 .

For matrices A,B,C with the same dimension, it is clear that

• A−B = A+ (−B),

• and A±B = B ± A,

• (A±B)T = AT ±BT ,

• (A±B)± C = A± (B ± C) = A±B ± C,

• if c is a scalar, then c(A±B) = cA± cB.

Matrix multiplication.
Now, we consider multiplying two matrices A and B, denoted AB. For this,
we require the number of columns of A and the number of rows of B to be
the same. Let A = [aij]m×n and B = [bij]n×r, then AB = [cij] is the matrix
of dimension m× r where the entry cij is defined by

cij = ai1b1j + ai2b2j + · · ·+ ainbnr.

The following illustration helps understanding the calculation of cij:
· · · · · ·
...

... . . . ...
ai1 ai2 · · · ain
...

... . . . ...
· · · · · ·



· · · · b1j · · · ·
· · · · b2j · · · ·
... . . . ... . . . ...
· · bnj · ·

 =

 ·
· cij · · ·

...

 .

While m and r are not necessarily equal, BA is not even well-defined. For
this reason alone, there is no reason that AB and BA are the same. In
general, even for square matrices A and B, AB and BA are not equal.
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Let A,B,C be two matrices. Then we have

• A(B ± C) = AB ± AC,

• (A±B)C = AC ±BC,

• (AB)C = A(BC) = ABC,

• (AB)T = BTAT ,

• IA = A = AI, (The two I’s can be of different dimension!)

• if c is a scalar, then c(AB) = (cA)B = A(cB),

whenever the above products are well-defined.

Let us practice a little bit to conclude this review session.

Exercise 1.1. Define

A =

[
1 0 −1
0 −1 0

]
, B =

 0 −1 −2
−1 0 0
−2 0 1

 , and C =

 1 1
0 2
−1 0

 .

Find

AB(a) BC(b) ABC(c) AC(d)

BA(e) BTA(f) CTBAT(g) AAT + CTC(h)
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Lab session 1

This lab session is an introduction to the MATLAB application and elementary
syntax. The following topics will be covered:

• defining variables, matrices and vectors,

• accessing variables, entries of a matrix / vector, rows and columns,

• elementary matrix operations and broadcasting.

Assignment of the week.

Let A =

1 3 0 0 −1
2 2 3 −2 2
3 4 9 −2 −2

 and B =


1 0 0
−3 2 2
3 −5 −1
0 −2 1
−1 −1 0

. Find the following:

(a) The first and last rows of AB.

(b) The first and last columns of BA.



2. Linear systems and matrix equations

2.1 Transforming a linear system into a matrix equation

Recall that a single-variable equation is said to be linear if it is in the form

ax = b.

This can be easily solved if a ̸= 0 achieving x = b
a
.

Having two variables, say x and y, we need two equations to fix the solution.
In this way, we cannot just choose any x and y independently because they are
linked by the given equations. This system of two equations are said to be a
linear system if it is in the form

a11x+ a12y = b1

a21x+ a22y = b2.

To solve this system, we first eliminate a variable and fix the solution of the
other then substitute back into one of the original equations.

The same principle applies to the case of linear systems with three variables,
x, y and z, as the following form

a11x+ a12y + a13z = b1

a21x+ a22y + a23z = b2

a31x+ a32y + a33z = b3.

To find a solution, we eleminate and substitute variables one by one.

We may now see the pattern: A linear system with n variables and n equa-
tions, namely x1, · · · , xn, takes the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a12x1 + a22x2 + · · ·+ a2nxn = b2
...

...
an1x1 + an2x2 + · · ·+ annxn = bn.

Again, the same elimination-and-substitution strategy still works here, but
with a lot more effort.

10
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Question. Is it necessary to have equal number of variables and equations?

The simple answer to the above question is “no.” We may have n variables
that are linked by m linear equations:

a11x1 + a12x2 + · · ·+ a1nxn =
a12x1 + a22x2 + · · ·+ a2nxn =

...
...

am1x1 + am2x2 + · · ·+ amnxn︸ ︷︷ ︸
n variables

=

b1
b2

bm.

 m equations

The array of values u1, · · · , un is called a solution of the above linear system if
subsituting x1 = u1, · · · , xn = un into the LHS gives RHS.

To review and familiarize linear systems, let us do some preliminary exercises.

Exercise 2.1. Verify whether or not x1 = 3, x2 = −1 a solution of the following
linear system

2x1 − 3x2 = 9

x1 + x2 = 2.

Exercise 2.2. Verify whether or not x1 = 2, x2 = 5 a solution of the following
linear system

x2 − x1 = 3

2x1 − 3x2 = −11.

On the other hand, how do we find a solution of this system?
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Exercise 2.3. Find a solution to the following linear system

x1 + x2 − x3 = 1

2x1 − x2 + x3 = 2

x1 − x2 − x3 = −1.
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Exercise 2.4. Find a solution to the following linear system

3x1 − 2x2 + 2x3 = 1

2x1 − x2 + x3 = 2

x1 − x2 = −1.

Solving the previous systems, we may have observed that our calculation is
dependent on the given equations. This is difficult to proceed when the number
of variables and equations grow larger. Hence we would need a more disciplined
strategy, and this involves changing the system into a matrix equation.

Turning a linear system into a matrix equation.
Given a linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a12x1 + a22x2 + · · ·+ a2nxn = b2
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

we would define

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 , b =


b1
b2
...
bm

 , x =


x1

x2
...
xn

 .
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We call the A the coefficient matrix, b the target vector, and x an unknown
vector. Then we have

Ax =


a11x1 + a12x2 + · · ·+ a1nxn

a12x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


and so the matrix equation

Ax = b

is equivalent to the linear system in question.

Augmented matrix for Ax = b.
To solve Ax = b by hand, it is often helpful to simplify it as an augmented
matrix [A | b], that is

[A | b] =

 a11 · · · a1n
... . . . ...

am1 · · · amn

∣∣∣∣∣∣∣
b1
...
bm

 .

Row operations.
Recall the operations that we did when solving linear systems in the previous
exercises:

• adding an equation into another,

• multiplying a constant to an equation,

• swapping order of equations.

These operations transfer to the matrix equation as (elementary)
row operations, which include

• adding a row into another,

• multiplying a constant to a row,

• swapping rows.
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2.2 Analyzing the equation Ax = b

We are not only interested in solving Ax = b, but also to understand it.

The first and foremost behavior we would like to observe about the equation
Ax = b is the number of solutions it has. We may very roughly speak of
consistent systems (those having a solution) and inconsistent systems (those
without a solution), but we want a more detailed description in this course.
This leads us to consider the three cases:

• (well-posed) Ax = b has a unique solution,

• (under-determined) Ax = b has multiple solutions,

• (over-determined) Ax = b has no solution.

To convince that all the three cases could happen, let us do the following
exercise.

Exercise 2.5. Let us observe that:

(a) Let A =

1 0 1
1 0 −1
0 1 0

 and b =

20
1

.

Then Ax = b has a unique solution, which is x∗ = (1, 1, 1).

(b) Let A =

[
1 0 −1
−1 1 0

]
and b =

[
0
1

]
.

Then Ax = b has multiple solutions. For example, x∗ = (0, 1, 0) and
x∗∗ = (1, 2, 1) are both solutions for this system.

(c) Let A =

 1 1
0 2
−1 4

 and b =

21
0

.

Then Ax = b has no solution.
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It is casually understood that

• a well-posed system has equal number of variables and equations,

• an under-determined system has less equations than variables,

• an over-determined system has more equations than variables.

However, to really use this verdict, we need to be sure that the systems is
reduced into its simplest form, i.e. the row echelon form.

Let us do one more exercise to persuade ourselves that we need to reduce a
system before judging it.

Exercise 2.6. Let A =

1 1 2
0 1 1
1 2 3

 and b =

41
5

.

Then we have 3 variables and 3 equations, but multiple solutions. For instance,
x∗ = (2, 0, 1) and x∗∗ = (3, 1, 0) are both solutions of this system. We will come
back to explain this exercise again.

2.2.1. Echelon forms

Row echelon forms.
Consider a matrix M = [mij]m×n. A row of M is called a zero row if it only
consists of 0. A row that is not a zero row is called non-zero row. In a non-
zero row, the first non-zero column in that row is called the leading entry.

Looking at the following matrix

P =


0 0 0 ∗○ · · ·
0 0 · · · · · · 0
0 ∗○ · · · · · · · · ·
0 0 · · · · · · 0

 ,

we conclude that the rows #2 and #4 are zero rows of this matrix, while
he circled entries (∗’s are any nonzero numbers) are the leading entries of
their rows.
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This matrix M is in a row echelon form if the following two conditions are
satisfied:

(1) All zero rows are stacked at the bottom.

(2) In each non-zero row, its leading entry is on the left of all the leading
entries below it.

One may simply observe this visually by stacking zero rows at the bottom
and see that the leading entries are arranged in a staircase manner (see an
example below with P̂ ).

Notice that the above matrix P is not in an echelon form (why?). However,
we may use row operations (swapping rows) to acheive an equivalent matrix
in the following echelon form

P̂ =


0 ∗○ · · · · · · · · ·
0 0 0 ∗○ · · ·
0 0 · · · · · · 0
0 0 · · · · · · 0

 .

Reduced row echelon form.
A matrix M is in a reduced row echelon form if it is in a row echelon form
and the following additional conditions are satisfied:

(3) all leading entries are 1,

(4) all entries above a leading entry are 0.

Exercise 2.7. Determine whether or not the matrices given in the following
are in row echelon and reduced row echelon form.

A =

1 2 0 −1
3 2 0 0
2 4 0 1

(a) B =

0 1 2 0 0 9
0 0 −1 2 −2 5
0 0 1 1 0 0

(b)

C =


1 1 1 0 0 0
0 0 −1 2 −2 5
0 0 0 1 0 0
0 0 0 0 0 0

(c) D =


0 0 1 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

(d)
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Let us note with the following facts.

Fact.

• Every matrix can be turned into a row echelon form using elementary
row operations.

• A single matrix may be turned into several row echelon forms.

• every matrix can be reduced into a unique reduced row echelon form

Exercise 2.8. Use elementary row operations to find row echelon forms of the
matrices from Exercise 2.7.
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2.2.2. Gauss elimination
The aim of the Gauss elimination is to give a systematic procedure to simplify

any matrix into a row echelon form. To do this, we eliminate as many nonzero
entries as possible by the following the steps below:

1. Start with the first nonzero column. Pick a nonzero entry, swap that row
to the top. Set i = 1.

2. Eliminate nonzero entries below the chosen entry from the previous step.

3. Find the next column with nonzero entry after the row i. Pick that
nonzero entry and swap to the row i+ 1.

4. Eliminate all the nonzero entries below the chosen entry from the previous
step.

5. Set i← i+ 1 and repeat Steps 3–5 to complete all columns/rows.

Exercise 2.9. Use Gauss elimination to turn the following matrices into a row
echelon form..

A =

1 2 0 −1
3 2 0 0
2 4 0 1

(a) B =


1 1 0 −1
1 2 1 0
2 4 1 1
3 6 2 1

(b)

C =


0 1 0 −1
1 0 1 0
0 −2 0 1
0 0 0 1

(c) D =


2 0 0 1 2
1 0 1 1 0
0 0 0 0 0
1 0 1 1 0

(d)
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An observation.

• Every square matrix’s row echelon form is a triangular matrix.

2.2.3. Gauss-Jordan elimination
The process of Gauss elimination reduces any given matrix into a row echelon

form. However, if we would like to go further in obtaining a reduced row echelon
form, we need a small extra computation in the Gauss elimination steps. This
modified algorithm is known as the Gauss-Jordan elimination whose steps are
listed as follows:

1. Start with the first nonzero column. Pick a nonzero entry, make it into
1 and swap that row to the top. Set i = 1.

2. Eliminate all nonzero entries in that column except the 1 from the pre-
vious step.

3. Find the next column with nonzero entry after the row i. Pick that
nonzero entry, make it into 1 and swap to the row i+ 1.

4. Eliminate all the nonzero entries in that column except the 1 from the
previous step.

5. Set i← i+ 1 and repeat Steps 3–5 to complete all columns/rows.

Exercise 2.10. Use Gauss-Jordan elimination to obtain the reduced row ech-
elon form of the following matrices.

A =

0 0 0 0 0
0 1 2 3 0
1 0 −1 2 3

(a) B =


−2 1 3 0
2 1 3 0
1 −1 0 0
1 1 1 3

(b)
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2.2.4. Rank and solutions of Ax = b

We regard each row of a matrix as an information. A matrix is then a
collection of information. Some of these information may be obtained from
others and hence does not genuinely a new information. A row echelon form
(or reduced row echelon form) of a matrix is viewed as a collection of genuine
information in the sense that each row cannot be deduced from the remaining
rows, hence no rows can be removed. It is natural that each matrix contains a
certain amount of information, and this amount is fixed.

Nonzero rows of row echelon matrices.
Let A be a given matrix. Then

• all row echelon forms of A has the same number of nonzero rows,

• the reduced row echelon form of A is unique.

With the consistence of nonzero rows in the above observation, one may
define a rank of a matrix to be the number of nonzero rows in a row echelon
form. That is, the rank is the number of genuine information that a matrix
carries.

Rank.
The rank of a matrix A is defined to be the number of nonzero rows of any
row echelon form of A. The rank of A is denoted by rank(A).

Exercise 2.11. Find the rank of the matrices from the previous exercises.
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Recall that a row echelon form of a matrix reveals the minimal true infor-
mation that it carries. Therefore, the number of solutions of a matrix equation
Ax = b can be observed from the row echelon form of the augmented matrix
[A|b]. More precisely, the number of solutions of Ax = b can be concluded from
the rank([A|b]).

Number of solutions through the rank.
Consider the equation Ax = b that corresponds to a system of n variables
and m equations. Then the following conclusion is drawn:

• rank(A) < rank([A|b]) ⇐⇒ Ax = b has no solution;

• rank(A) = rank([A|b]) = n ⇐⇒ Ax = b has a unique solution;

• rank(A) = rank([A|b]) < n ⇐⇒ Ax = b has multiple solutions.

The following flow chart helps the explaining the use of rank to determine
the number of solutions of Ax = b.

Start: Compute rank(A) and rank([A|b])

rank(A) = rank([A|b]) Stop: No solution.

rank(A) = n

Stop: Unique solution.

Stop: Multiple solutions.

No

Yes

No

Yes

Practical aspects.
Consider again the system represented by Ax = b with n variables and m
equations. In practice, to see if rank(A) < rank([A|b]) happens, we do not
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need to compute rank(A) and rank([A|b]) separately.

Consider directly the matrix [A|b]. When reducing [A|b] to one of its row
echelon form [Â|b̂], the Â is always a row echelon form of A. Therefore,
we also obtain a row echelon form of A in the process of obtaining a row
echelon form of [A|b]. Then the following hold:

If a row echelon form of [A|b] consists of a row of the form [0 · · · 0|∗]
(where ∗ ≠ 0), then rank(A) < rank([A|b]) and so Ax = b has no
solution.

Let us rewrite the above flow chart in a more practical perspective.

Start: Find a row echelon form of [A|b].

Contains [0 · · · 0|∗] Stop: No solution.

#nonzero rows = #var.

Stop: Multiple solutions.

Stop: Unique solution.

Yes

No

Yes

No

Exercise 2.12. Determine the number of solutions of the following system:

3x1 + x2 − x3 = 3

x1 − x2 + x3 = 1

2x2 − 2x3 = 0
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Exercise 2.13. Determine the number of solutions of the following system:

2x1 + x2 − x3 = 2

x1 + x2 = 2

x2 + x3 = 0

Exercise 2.14. Determine the number of solutions of the following system:

x1 + x2 + x3 + x4 = 4

2x1 + 3x2 − x3 − x4 = 3

x2 + x3 = 2

2x1 − x2 + x3 − x4 = 1

x1 + x2 − x3 − 2x4 = 0
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Exercise 2.15. Determine the number of solutions of the following system:

x1 + x2 + x3 + x4 = 4

2x1 + 3x2 − x3 − x4 = 3

x2 + x3 = 2

2x1 − x2 + x3 − x4 = 1

x1 + x2 − x3 − x4 = 0
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2.3 Finding solutions of Ax = b.

Now, after being able to determine the number of solutions of Ax = b, it is
time to actually find its solutions (if one exists). The strategy is to simplify
the augmented matrix [A|b] using either Gauss elimination or Gauss-Jordan
elimination, and start analyzing from there.

Exercise 2.16. Solve the following linear system

x1 + x2 − x3 = 6

x1 − x2 + x3 = −2
2x1 − 2x2 + 3x3 = −5

Exercise 2.17. Solve the following linear system

x1 + x2 − x3 − x4 = 0

x1 − x2 + x3 + x4 = 2

x2 − 2x3 = −1
x1 + x2 + 3x3 + 2x4 = 7
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Exercise 2.18. Solve the following linear system

2x1 + x2 − 3x3 = 1

x1 − x2 + x3 = 1

3x1 − 2x3 = 2

Exercise 2.19. Solve the following linear system

x1 + 2x2 − x3 + x4 = 3

2x1 − 2x2 + 2x3 − x5 = 2

2x1 − 3x3 = −1



3. Vector spaces

Let us motivate the study of a vector space, again, from the equation Ax = b
that corresponds to a system of n variables and m equations. Let us begin with
the special case where b = 0.

Multiple solutions... Yes, but how many?
It turns out that when Ax = 0 has more than one solution, it has infinitely
many of them. Let us demonstrate this fact. Let x∗ and x∗∗ both be
solutions of Ax = 0. Take any numbers α and β. Then we get

A(αx∗ + βx∗∗) = αAx∗ + βAx∗∗ = 0.

This means from two different solutions, we can generate infinitely many
more by choosing different values of α and β.

Let S be the set that contains all the solutions of Ax = 0. It turns out that
S has a particular shape to it, e.g. a single dot, a straight line, a flat plane,
a space, etc. We actually observe that all of them have linear shapes. In
fact, we shall see subsequently that a solution set of the equation Ax = 0,
if not empty, is a vector space (or a linear space).

Now, let us state the formal definition of a vector space.

General vector spaces.
Let V be a nonempty set (whose elements we call vectors) and K be a
scalar field (whose elements we call scalars and K is usually either R or
C). Let + and · be the vector addition (adding two vectors in V yields
a vector in V ) and scalar multiplication (multiplying a scalar in K and
a vector in V yields a vector in V ). Then the set V together with the
operations + and · (precisely written as the tuple (V,+, ·)) is said to be a
vector space over the scalar field K if the following conditions are satisfied
for all u, v, w ∈ V and all α, β ∈ K:

(V1) u+ v = v + u;

28
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(V2) (u+ v) + w = u+ (v + w);

(V3) there is a zero vector, denoted by 0, such that u+ 0 = 0 + u = u;

(V4) for each u ∈ V , there is a vector in V , denoted by −u and called the
negative of u, such that u+ (−u) = (−u) + u = 0;

(V5) α(u+ v) = αu+ αv;

(V6) (α + β)u = αu+ βu;

(V7) (αβ)u = α(βu);

(V8) 1u = u.

Note that the scalar multiplication · is always omitted.

The following remarks are in order.

• The zero vector and the number zero are both denoted by 0. Thus the
reader must be aware of the context where 0 is used.

• The zero vector in Rn is exactly the vector 0 = (0, · · · , 0︸ ︷︷ ︸
n times

).

• The negative of each u ∈ Rn is unique, and it is given exactly by the
formula −u = (−1)u.

3.1 The space Rn and its subspaces

Let us first note some key properties of Rn and its two operations, namely
the addition ‘+’ and scalar multiplication ‘ · ’.

Rn as a vector space.
We denote Rn as the set of all n-dimensional real vectors x = (x1, · · · , xn)
where xi ∈ R for each i = 1, · · · , n. Equipped with the vector addition ‘+’
and scalar multiplication ‘ · ’ (where we always omit the symbol ‘ · ’), the
following properties hold for every u, v, w ∈ Rn and every α, β ∈ R:

(E1) u+ v = v + u;

(E2) (u+ v) + w = u+ (v + w);

(E3) there is a zero vector, denoted by 0, such that u+ 0 = 0 + u = u;

(E4) for each u ∈ Rn, there is a vector in Rn, denoted by −u and called the
negative of u, such that u+ (−u) = (−u) + u = 0;
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(E5) α(u+ v) = αu+ αv;

(E6) (α + β)u = αu+ βu;

(E7) (αβ)u = α(βu);

(E8) 1u = u.

Therefore, Rn (with its usual vector addition and scalar multiplication) is
a vector space.

In what follows, the space Rn is always equipped with these classical
operations unless explicitly stated otherwise.

What does Rn carry?
Obviously, we have the following sequence:

• The space R which looks is a straight line (a 1D object).

• The space R2 which looks is a flat plane (a 2D object).

• The space R3 which is the 3D space we live in.

• The spaces Rn with n ≥ 3 are understood intuitively (adding one more
axis to R3 and so on). They are beyond our ability to draw.

Observe that R2 actually contains many straight lines. These lines behave
just like the real line R, if it contains 0. Roughly speaking, the 2D space R2

carries smaller 1D vector spaces. Similarly, this 3D space R3 contains many
straight lines as well as flat planes. In the same fashion, this R3 carries
smaller 1D and 2D vector spaces. This goes on to R4, R5, etc.

This phenomenon serves as the basic intuition of a vector subspace, that
is, a subset which is again a vector space in itself.

Vector subspace.
Suppose that V is a vector space. Then a subset U ⊂ V is called a
vector subspace of V (or simply a subspace of V ) if U is a vector space
with the vector addition and scalar multiplication inherited from V .

In practice, to check whether or not a subset U is a vector subspace, we
can use the following single-step criterion.
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Single-step subspace criterion.
If the following condition holds

(S1) αu+ βv ∈ U for any u, v ∈ U and any α, β ∈ K,

then U is a vector subspace of V .

The following double-step criteria is equally applicable. The idea is to
break the single-step criterion into two simpler ones.

Double-step subspace criteria.
If the following two conditions hold

(D1) u+ v ∈ U for all u, v ∈ U ,

(D2) αu ∈ U for all u ∈ U and α ∈ K,

then U is a vector subspace of V .

On the contrary, to show that U ⊂ V is not a vector subspace, we need
to find those elements u, v ∈ U and α, β ∈ U that violate one of the criteria
(S1), (D1) or (D2).

Now that we know Rn is a vector space, let us explore some ot its subspaces.

Exercise 3.1. Show that U = {(x, y) ∈ R2 |x = 2y} is a subspace of R2.

Exercise 3.2. Show that the set U = {(x1, x2) ∈ R2 |x1 = x2
2} is not a

subspace of R2.
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Exercise 3.3. Consider a set of the form

X = {(x1, x2) |x1 = ax2 + b},

where a, b ∈ R are constants. Show the following:

(a) When b = 0, then X is a subspace of R2 for any choice of a.

(b) When b ̸= 0, then X is not a subspace of R2 for any choice of a.

In particular, we may conclude from the above facts that all straight lines
passing through the origin are subspaces of R2 and the ones not passing are
not.

Exercise 3.4. Verify which of the following sets are subspaces of R2.

(a) W = {(x,−x) |x ∈ R}.
(b) X = {(x,−2x) |x ≥ 0}.
(c) Y = {(x, y) | y ≤ x}.



Introductory Applied Linear Algebra | Parin Chaipunya 33

We may furthernotice that a set involves nonlinear operations volving one
or more of the variables (e.g. multiplications, powers, square roots, exponents,
logarithms, etc.) is usually not a linear space.

Exercise 3.5. Show that the following sets are not vector subspaces of R2.

(a) M = {(x1, x2) ∈ R2 |x1x2 = 0}.
(b) P = {(x1, x2) ∈ R2 |x1 +

√
2x = 1}.

(c) X = {(x, y) ∈ R2 |x1(1− x2) = −1}.
(d) Y = {(x, x2) |x ∈ R}.

Exercise 3.6. Which of the following are vector spaces.

(a) X = {(x,−2x+ 2z, z) |x, z ∈ R}.
(b) Y = {(x, y, z) ∈ R3 |xy = xz}.
(c) Z = {(x1, · · · , xn) |x1 = 0 and xn = 0}
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We next consider in the upcoming exercises the two important vector spaces
that are generated by a given matrix.

Exercise 3.7. Let A be any m×n matrix. Then the solution set of Ax = 0 is
a vector subspace of Rn. This set is actually called the kernel of A, or ker(A).
In some text books, the kernel is also called the null space.

Exercise 3.8. Let A be any m×n matrix. Then the set of all multiplications
Ax is a vector subspace of Rm. This set is actually called the image of A, or
im(A).
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3.2 Linear combination and linear span

Linear combination.
Let (V,+, ·) be a vector space over the field K ∈ {R,C} and v1, v2, · · · , vk
are vectors in V . A linear combination of these vectors is any vector v ∈ V
of the form

v = α1v1 + α2v2 + · · ·+ αkvk

where α1, · · · , αk are scalars.

Example. Consider the vectors v = (4, 0, 3), v1 = (1, 0, 0), v2 = (0, 1, 0) and
v3 = (0, 0, 1). Then v is a linear combination of v1 and v3, but not of v1 and
v2.

Exercise 3.9. Let v = (5, 5,−5, 3), v1 = (1, 2, 0, 0), v2 = (−1, 1, 1, 1) and
v3 = (−2, 0, 3,−1). Is v a linear combination of the other vectors v1, v2, v3 ?
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Exercise 3.10. Let v = (2, 3,−1, 1), v1 = (1, 1, 3, 2), v2 = (−1, 2, 1, 0) and
v3 = (2, 0, 0,−1). Is v a linear combination of the other vectors v1, v2, v3 ?

A nice way to generate a vector subspace from a few vectors is to use the
linear space, which is nothing else but all the possible linear combinations of
such given vectors.

Linear span.
Let V be a vector space over the field K ∈ {R,C} and U =
{v1, v2, · · · , vk} ⊂ V . Then the linear span (or simply the span) of U is

span(U) = span(v1, · · · , vk) =

{
k∑

i=1

αivi |α1, · · · , αk ∈ K

}
,

i.e. the set of all linear combinations of vectors in U . We also say that
the set W = span(U) is generated by v1, · · · , vk, or that v1, · · · , vk are
generating vectors for W .

Exercise 3.11. Let V be a vector space and U = {v1, · · · , vk} be a subset of
V . Show that span(U) is a vector subspace of V .
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Exercise 3.12. Find span(U) where U is given by

(a) U = {(1, 0), (0, 1)}
(b) U = {(1, 0), (1, 1)}
(c) U = {(0, 1, 0), (2, 0, 2)}

Also notice that the same set may be generated by a different set of vectors.
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At this point, one may also observe that a single vector v may be written
as a linear combination of vectors v1, · · · , vk in more than one way. Hence the
representation of v as

v = α1v1 + · · ·+ αkvk

may not be unique due to the available choices of the coefficients αi’s. Let us
investigate this non-unique characteristic in the following example.

Example. Consider v1 = (1, 1), v2 = (1, 0) and v3 = (0, 1). Then the vector
v = (2, 2) can be obtained as a linear combination of v1, v2, v3 by either

v = 0v1 + 2v2 + 2v3

or
v = 1v1 + 1v2 + 1v3

or
v = 4v1 − 2v2 − 2v3

et cetera.

In this example, if we delete one of the vectors v1, v2 or v3, then v can still
be written as a linear combination of the remaining vectors, and, in a unique
way. Let us do this as the next exercise.

Exercise 3.13. From the previous example...

(a) Find span({v1, v2, v3}).
(b) Show that v ∈ span({v1, v2, v3}).
(c) Show that if one of the vectors v1, v2, v3 is dropped, then the new linear

span equals the original one. Moreover, v can be written as a linear
combination of the remaining vectors in a unique way.

(d) If we drop one more vector, then the generated span is a different one.
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In this previous exercise, we see several worthy remarks. Let us list the
important ones:

• R2 itself is a linear span.

• A subspace can be written as a linear span in several different ways.

• Some of the generating vectors are superfluous, and hence can be dropped.
This means we may write the same linear span with less generating vec-
tors.

• We cannot drop too many generating vectors while maintaining the same
linear span. The minimal vectors left are the most important ones. In
fact, these are basis vectors that we will later discuss.

Linear independence.
Let V be a vector space. The vectors v1, · · · , vk ∈ V are said to be
linearly independent if the only coefficients α1, · · · , αk that makes

α1v1 + · · ·+ αkvk = 0

are given by α1 = α2 = · · · = αk = 0.

If v1, · · · , vk are not linearly independent, we say that they are
linearly dependent.

Exercise 3.14. Show that the vectors v1 = (1, 0) and v2 = (0, 1) are linearly
independent.

Exercise 3.15. Show that the vectors v1 = (1, 1, 1), v2 = (1, 1, 0) and v3 =
(1, 0, 0) are linearly independent.
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Exercise 3.16. Show that the vectors v1 = (1, 1), v2 = (1, 0) and v3 = (0, 1)
are linearly dependent.

Exercise 3.17. Show that if v1, · · · , vk are linearly dependent, then at least
one of these vectors can be written as a linear combination of the remaining
ones with some nonzero coefficients.
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3.3 Basis and dimension.

The motivation to the notion of a basis of a vector space came from the idea
that a minimal choice of vectors can be selected and form the same vector space.
Notice that if the generative vectors of a vector space are linearly independent,
then we have no chance dropping any vectors. In the other words, these vectors
are already minimal.

Basis.
Let V be a vector space. The vectors v1, · · · , vk ∈ V are called basis vectors
of V if the following two conditions are satisfied

• span({v1, · · · , vk}) = V ,

• v1, · · · , vk are linearly independent.

The set {v1, · · · , vk} is called a basis of V .

Fact. Every vector space has a basis.

Fact. All bases of a vector space have the same number of elements.

Exercise 3.18. Consider the vector space Rn and vectors e1, · · · , en ∈ Rn

given by

e1 = (1, 0, 0, · · · , 0︸ ︷︷ ︸
n− 1 times

)

e2 = (0, 1, 0, · · · , 0︸ ︷︷ ︸
n− 2 times

)

...
en = (0, 0, · · · , 0︸ ︷︷ ︸

n− 1 times

, 1).

Show that these vectors e1, · · · , en constitute a basis for Rn.
This basis is known as the standard basis for Rn.
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Exercise 3.19. Find some other bases for Rn.

Exercise 3.20. Find a basis for the vector space

V = {(x1, x2, x3) ∈ R3 | 2x1 − x3 = 0, x1 + 3x2 = 0}.
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Exercise 3.21. Find a basis for the vector space

W = {(x1 + x2 − x3, x3 − x2, x1) ∈ R3 |x1, x2, x3 ∈ R}.

Basis representation.
Consider any vector space V with a basis B = {b1, · · · , bn}. Then any
element x ∈ V can be written uniquely as

x = α1b1 + α2b2 + · · ·+ αnbn.

The shorthand notation for this is given by

x =


α1

α2
...
αn


B

= (α1, · · · , xn)B.

When V = Rn is equipped with the standard basis E = {e1, · · · , en}, we
know that the basis representation x = (x1, · · · , xn)E is just the same as
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the classical expression x = (x1, · · · , xn). Therefore, it is agreed to write
x = (x1, · · · , xn) without indicating the basis when the standard basis is
used.

Exercise 3.22. Let us equip R2 with the basis B = {(1, 0), (1, 1)}. Then write
down the vectors x = (3, 2) and y = (−2, 5) in the representation of the basis
B.

Exercise 3.23. Suppose that R3 is equipped with the basis

B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}.

Write the vector x = (3, 2, 1) in the representation of thebasis B.
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Dimension.
Once again that we would like to emphasize that every basis of a vector
space V contains the same number of basis vectors. This consistent number
is referred to as the dimension of V , or briefly as dim(V ).

Example. Recall from the above exercises that dim(Rn) = n, dim(V ) = 1
and dim(W ) = 2.

Rank and nullity.
Let A be any given matrix. Then the rank and nullity are concluded as
follows.

The rank theorem. The rank can be computed by rank(A) =
dim(im(A)).

Nullity. The nullity of A is defined by null(A) = dim(ker(A)).

Finally, we may link the relationship between the rank and nullity in the
following well-known theorem.

The rank-nullity theorem. If A has n columns, then rank(A) +
null(A) = n.

Exercise 3.24. Re-assess exercises 3.20 and 3.21 in terms of dimensions using
the rank-nullity theorem.
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Exercise 3.25. Consider the following linear system:

3x1 + 2x2 − 3x4 = 0

2x2 + x4 = 0

2x2 − 2x3 − x4 = 0

What is the dimension of the solution set of this system ? How does it look
like ?

The solution set of Ax = b.
We have investigated already that the solution set of Ax = b is a linear
space if and only if b = 0. Moreover, the solution set of Ax = 0 receives
a special treatment as ker(A). However, one could observe that if Ax = b
has a solution x0, then the solution set of Ax = b is given by

x0 + ker(A) = {x0 + y | y ∈ ker(A)}.

This means the solution set of Ax = b is a translation of ker(A), so that
they have the same dimension and shape.

Exercise 3.26. Consider the following linear system:

3x1 + 2x2 − 3x4 = 2

2x2 + x4 = −1
2x2 − 2x3 − x4 = 0

What is the dimension of the solution set of this system ? How does it look
like ?
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Exercises

1. Show that the vectors in each of the following items are linearly dependent.

◦ v1 = (1, 2, 0), v2 = (0, 1, 1).

◦ v1 = (0, 1, 0), v2 = (0, 0, 1), v3 = (1, 1, 0).

◦ v1 = (1, 0, 0, 1), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 0), v4 = (0, 2, 1, 0).

2. Show that the vectors in each of the following items are not linearly inde-
pendent.

◦ v1 = (0, 1, 1), v2 = (−1,−1,−1), v3 = (1, 0, 0).

◦ v1 = (2, 2, 0, 0), v2 = (0, 1, 0, 1), v3 = (2, 1, 0, 3), v4 = (−2, 1, 0, 2).
3. Find a basis for the following vector spaces and determine their dimensions.

◦ V = {x ∈ R3 |x1 = −x3, x2 = −x1}.

◦ V = ker

([
1 0 1
0 1 1

])
.

◦ V = {(x1 + x3,−2x2) |x1, x2, x3 ∈ R}.
◦ V = {(3x1, x1 + x2 − x3, x3) |x1, x2, x3 ∈ R}.
◦ V = {x ∈ R3 | 2x1 − 3x2 = 0, x1 + 2x3 = 0}.

4. Find dim(ker A) and dim(imA) of the following instances of a matrix A.
(Hint: Make use of the rank-nullity theorem.)

◦ A =

[
0 1 2
1 1 2

]

◦ A =

1 2 1
2 3 1
2 0 0

.

◦ A =

[
0 0 1 1
1 1 0 0

]
.

◦ A =

0 2
1 1
2 0

.
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5. Determine the dimension of the solution set of the following linear system:

2x1 + x3 = 2
x2 + x3 − x4 = 2

x1 − x4 = 0.

6. Suppose that A is a matrix such that dim(ker A) = 1 + dim(imA). Show
that A has odd number of rows. (Hint: Use the rank-nullity theorem.)



4. Linear transformation

There is a special class of functions that maps between two vector spaces,
called linear transformation. We will discover later that this class is special
because it can be fully described with matrices in the Euclidean setting. This
characterization also brings about a new interpretation to the equation Ax = b.

Linear transformation.
Let V and W be two vector spaces over the field K ∈ {R,C}. A function
T : V → W is said to be a linear transformation if the condition

T (αx+ βy) = αT (x) + βT (y)

holds true for all x, y ∈ V and α, β ∈ K.

It should be remarked that the additions and multiplications appeared on
both sides of the equation, i.e. αx + βy and αT (x) + βT (y), are additions
and multiplications on different spaces V and W , respectively.

Exercise 4.1. Show that the following functions are linear transformations.

(a) T : R2 → R defined by T (x) = T (x1, x2) = 2x1 − x2.

(b) T : R→ R2 defined by T (x) = (2x, x).

(c) T : R3 → R2 defined by T (x) = T (x1, x2, x3) = (2x1 − x2, x2 − 2x3).

(d) T : R2 → R2 defined by T (x) = (x2, x1).

49
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Exercise 4.2 (Matrices as linear transformations.). Let A be an m×n matrix.
Show that the function T : Rn → Rm given by

T (x) = Ax

is a linear transformation. With this fact, we can now view the matrix A as a
function that transforms x ∈ Rn into Ax ∈ Rm.

Exercise 4.3. Let V and W be two vector spaces and T : V → W be a linear
transformation. Show that T (0) = 0. Again, one should be cautious that 0 on
the LHS and RHS of the equation belongs to different vector spaces V and W ,
respectively.

We may use the converse of this fact to disprove linearity of a function: If
T (0) ̸= 0, then T is not a linear transformation.
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Exercise 4.4. Show that the following functions are not linear transforma-
tions.

(a) T : R→ R defined by T (x) = 3x+ 1.

(b) T : R→ R2 defined by T (x) = (x, x2).

(c) T : R2 → R2 defined by T (x) = (x1 + x2, x1x2).

(d) T : R2 → R defined by T (x) = sin(x1) + cos(x2).
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Exercise 4.5. Determine whether or not the following functions are linear
transformations.

(a) T (x1, x2) = sin2(x1) + cos2(x2).

(b) T (x) = sin2(x) + cos2(x).

(c) T (x1, x2) = sin2(x1) + cos2(x1)− (1 + x2).
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Matrix representation of a linear transformation.
We have seen that every matrix can be seen as a linear transformation.
Now, we show that every linear transformation can also be seen as a matrix.
Suppose that T : Rn → Rm is a linear transformation. Then there is an
m× n matrix AT in which

T (x) = ATx (∀x ∈ Rn).

This matrix AT is called the matrix representation of T (or shortly the
matrix of T ) and can be formulated by

AT =

T (e1) T (e2) · · · T (en)


where e1, · · · , xn are vectors in the standard basis of Rn.

Exercise 4.6. Find the matrix representations of all the linear transformations
from Exercise 4.1.
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The space L (V,W ).
Let V and W be two vector spaces over the field K ∈ {R,C}. We define

L (V,W ) = {All linear transformations T : V → W}.

For any S, T ∈ L and scalar α ∈ K, we define addition S + T and scalar
multiplication αT by

(S + T )(x) = S(x) + T (x) and (αT )(x) = αT (x).

Then L (V,W ) is a vector space over the field K under the above albegra.

If V = Rn and W = Rm, then each linear transformation T : V → W is
equivalent to a matrix AT . Hence the vector space L (V,W ) is then reduced
to

Rm×n = {All matrices of dimension m× n}.

Hence we write L (V,W ) ≈ Rm×n to denote this equivalence.

Exercise 4.7. Consider the space Rm×n. For i = 1, · · · ,m and j = 1, · · · , n,
define Eij to be the matrix whose element at the position (i, j) is 1 and all 0
elsewhere.
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Kernel and range.
Given a linear transformation T : V → W . The kernel (or null space) of T
is given by

ker(T ) = {x ∈ V |T (x) = 0}.

Likewise, the range of T is

ran(T ) = {y ∈ W | ∃x ∈ V : y = T (x)} = {T (x) |x ∈ V }.

It can be noticed that ker(T ) = ker(AT ) and ran(T ) = im(AT ), hence they
both are linear subspaces. Moreover, we can...

• compute the kernel ker(T ) by solving the linear system ATx = 0,

• compute the range ran(T ) as the linear span of the columns of AT .

This relationship allows the application of the rank-nullity theorem in the
context of linear transformations.

Exercise 4.8. Consider the linear transformation

T (x1, x2, x3) = (2x1 − x2, x1 + x2).

Find ker(T ) and ran(T ).
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Exercises

1. Determine whether the following functions are linear transformations.

◦ T (x1, x2) = (2x1, 3x1 − x2).

◦ T (x1, x2, x3) = (0, 1, x1 + x2 + x3).

◦ T (x1, x2) = (x1 − x2
2 + x1x2, 2 + x2).

◦ T (x1, x2, x3) = cos
(
3π
2

)
(x1 + x2 + x3).

◦ T (x1, x2) =
[
2 3

] [x2

x1

]
.

2. Suppose that A is an m× n matrix and T : Rn → Rm is defined by

T (x) = Ax.

Show that the matrix representation of T is AT = A.

3. Find a matrix representation of the following linear transformations.

◦ T (x1, x2) = (x1, x2, x1, x2).

◦ T (x1, x2, x3) = x1 + x2 + x3.

◦ T (x1, x3, x3, x4) = (x1 + x3,−x2 − 3x4).

4. Find dim(ker T ) and dim(ran T ) of T from Exercise 3 by using the rank-
nullity theorem.

5. Find ker T and ran T of T from Exercise 3.



5. Determinant and invertibility

The determinant is a scalar value assigned to a square matrix. Many prop-
erties of a matrix is encoded withing its determinant. The most important one
would be the invertibility of a matrix (or of the corresponding linear transfor-
mation). The determinant can also be used to explain how a transformation
actually transforms the space. The determinant of a matrix A is denoted by
det(A) or |A|.

5.1 The 2× 2 and 3× 3 cases.

The determinant can be defined for any n×n matrices, but let us first focus
on the 2× 2 and 3× 3 cases as they can be easily computed using the Sarrus
rule.

The 2× 2 Sarrus rule.
Let A be a 2× 2 matrix. Then its determinant can be computed by

det(A) = a11a22 − a12a21.

This formula is known as the 2× 2 Sarrus rule.

Exercise 5.1. Find the determinant of A =

[
1 3
−2 1

]
, B =

[
1 3
1 1

]
and

C =

[
3 6
1 2

]
. Note that det(A) can be positive, negative and 0, and this is

independent of the sign of elements in a matrix.
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The 3× 3 Sarrus rule.
Let A be a 3× 3 matrix. Then its determinant can be computed by

det(A) = (a11a22a33 + a12a23a31 + a13a21a32)

− (a31a22a13 − a32a23a11 − a33a21a12).

This formula is known as the 3 × 3 Sarrus rule. The following mnemonic
device is useful for this rule:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

− − −

+ + +

Exercise 5.2. Find det(A) where A is given by

A =

1 1 1
2 2 3
0 1 0

 .
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5.2 The n× n case.

The situation is quite different when it comes to determinant of matrices or
larger than 3 × 3. There is no mnemonic device for this and it may involves
many more steps and concepts.

The minors, cofactors, and determinants.
Let A be an n × n matrix. We write A−ij to denote the (n − 1) × (n − 1)
matrix obtained by removing Row#i and Col#j from A.

The minor matrix of A, denoted by M(A), is an n× n matrix

M(A) = [Mij]n×n

whose element Mij is computed by

Mij = det(A−ij).

The cofactor matrix of A, denoted by C(A), is an n× n matrix

C(A) = [Cij]n×n

whose element Cij is computed by

Cij = (−1)i+jMij = (−1)i+jdet(A−ij).

The determinant of A can be computed by fixing any row i and calculate

det(A) =
n∑

j=1

aijCij = ai1Ci1 + ai2Ci2 + · · ·+ ainCin,

or equivalently by fixing any column j and calculate

det(A) =
n∑

i=1

aijCij = a1jC1j + a2jC2j + · · ·+ anjCnj.
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One should notice now the inductive nature of minors and cofactors of
A. For instance, to compute the minor (and the cofactor) of a 4×4 matrix,
we need to compute determinants of 3 × 3 matrices. Similarly, computing
the minor (and the cofactor) of a 5× 5 matrix requires the determinants of
4× 4 matrices, etc.

Let us warm up with a 3× 3 matrix wihtout using the Sarrus rule.

Exercise 5.3. Let  2 −1 0
−1 0 3
0 2 3

 .

Find det(A) using different rows/columns.



Introductory Applied Linear Algebra | Parin Chaipunya 61

Let us move on to larger matrices.

Exercise 5.4. Find the determinant of the following matrices.

A =


1 0 0 4
0 1 0 −3
3 −1 −2 3
1 1 2 0

(a) B =


2 0 0 3 −2
1 1 0 −3 1
3 0 0 3 1
−1 −1 0 0 2
1 0 2 0 4

(b)
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Properties of the determinant.
Suppose that A and B are square n× n matrices, then..

• If A contains a zero row or a zero column, then det(A) = 0.

• If A contains two identical rows or columns, then det(A) = 0.

• If A is a triangular matrix, then det(A) = a11a22 · · · ann.
• det(AB) = det(A)det(B)

• det(AT ) = det(A)

• det(cA) = cndet(A) for any scalar c ∈ R.

From the last property, it implies that det(−A) = (−1)ndet(A) so that we
have det(−A) = −det(A) when n is odd and det(−A) = det(A) when n is
even.

Also note that the determinant is not distributed under summation, i.e.
det(A+B) and det(A) + det(B) are independent.

Exercise 5.5. Let A =


1 0 3 1
0 11 3 −4
0 0 11 385
0 0 0 −1

 and B =


−3 0 0 0
2 28 0 0
−98 42 11 0
13 0 −56 2

.

Find det(2AB).
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Exercise 5.6. Find two matrices A and B such that det(A + B) ̸= det(A) +
det(B).

Exercise 5.7. Find two matrices A and B such that det(A + B) = det(A) +
det(B).
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Determinant of triangular block matrices.
A matrix A can be subdivided into p× q blocks in such a way that

A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

... . . . ...
Ap1 Ap2 · · · Apq

 ,

with appropriate dimensions for each submatrices Akl’s.

We say that A is in an upper block triangular form if A can be subdivided
into p× p blocks with each block Akl being a square matrix and

A =


A11 ∗
0 A22
... . . .
0 · · · 0 App

 .

Likewise, we can define a lower block triangular matrix in the same way.
We simply say that A is a block trinangular matrix if it is either upper or
lower block traingular.

If A is a block triangular matrix with all diagonals A11, · · · , App being
square matrices, then det(A) = det(A11)det(A22) · · · det(Ann).

Exercise 5.8. Find det(A) where A is given by A =


2 3 4 7 8
−1 5 3 2 1
0 0 2 1 5
0 0 3 −1 4
0 0 5 2 6

.
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5.3 Determinant, rank and invertibility.

It is interesting to see how the determinant is related more to the equation
Ax = b or even to the matrix A itself.

Given a square n× n matrix A. We say that..

• A is of a full rank if rank(A) = n;

• A is invertible if there exists an n×n matrix, denoted with A−1, satis-
fying AA−1 = A−1A = I. In this case, A−1 is called the inverse matrix
of A.

One may suspect an existence of a matrix B in which AB = I but BA ̸= I
(or vice verse). It turns out for a square matrix that such exceptional
situation would not happen.

Fact. The following conditions are equivalent:

(i) A is of a full rank.

(ii) A is invertible.

(iii) det(A) ̸= 0.

In the case where A is invertible (which is actually where det(A) ̸= 0),
the inverse matrix of A can be calculated by

A−1 =
1

det(A)
adj(A),

where adj(A) = C(A)T is called the adjoint of A.

Exercise 5.9. Let A be a 2× 2 invertible matrix. Find a general formula for
A−1.
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Exercise 5.10. Find the inverse of the following matrices.

A =

1 2 0
0 0 1
1 0 0

(a) B =

1 0 1
0 0 1
1 0 0

(b) C =

2 0 0
1 0 −2
0 1 0

(c)
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Some facts concerning invertibility.
Let A and B be two n× n matrices.

• If A is invertible, then the equation Ax = b has a unique solution for
all b ∈ Rn. Moreover, the solution is x = A−1b.

• If both A and B are invertible, then AB is also invertible and

(AB)−1 = B−1A−1.

• If one of A or B is not invertible, then AB is not invertible.

Exercise 5.11. Find a solution to the linear system

2x1 = 4

x1 − 2x3 = −3
x2 = 1.

Exercise 5.12. Let A =

[
1 0
1 4

]
and B =

[
−2 1
2 0

]
. Find (AB)−1.



Introductory Applied Linear Algebra | Parin Chaipunya 68

Invertibility of a linear transformation.
As we now know that linear transformations (on Rn) and matrices are equiv-
alent concepts. Their invertibility can be concluded from the matrix repre-
sentations

A linear transformation T : Rn → Rn is invertible if there is a function
T−1 : Rn → Rn in which T ◦ T−1(x) = T−1 ◦ T (x) = x for all x ∈ Rn.
The function T−1 here is called the inverse transformation (or briefly the
inverse) of T .

If T : Rn → Rn is a linear transformation whose matrix representation
is AT , then the inverse of T is given by the inverse matrix A−1

T . From
this, we also know that T−1 is also a linear transformation.

Exercise 5.13. Let T (x) = T (x1, x2, x3) = (x1, x1 + x2, x1 + x3) be a linear
transformation. Find the inverse transformation of T .
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Exercise 5.14. Let T be a linear transformation whose matrix representation
is AT . Then

• det(AT ) ̸= 0 if and only if ker(T ) = {0}.
• T is one-to-one if and only if ker(T ) = {0}.
• det(AT ) ̸= 0 if and only if T is one-to-one and onto.

Determinant and geometry.
If T : Rn → Rn is a linear transformation, then we may understand..

• how the space Rn is deformed under the application of T by looking
at its range ran(T ).

• how some parts of Rn is collapsed to 0 by looking at its kernel ker(T ).

We can also note from the rank-nullity theorem that T cannot explode the
space in the sense that it is impossible to gain additional dimensions by the
transformation T .

Now, let AT be the matrix representation of T . The determinant det(AT )
informs us the following information:

• The value |det(AT )| is the area/volume of the parallelotope generated
by columns of AT . Since columns of AT are T (ei)’s, we obtain the
information of how the parallellotope generated by e1, · · · , en are en-
larged/shrinked through the transformation T .

• The sign of det(AT ) tells about the change of orientation of the trans-
formation. If det(AT ) is negative, then the transformation does not
preserve the orientation of the axes.
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Exercises

1. Compute the determinants of the following matrices.

◦ A =

2 7 2
0 0 1
1 0 0

.

◦ B =


2 7 0 6 3
0 1 0 2 3
0 0 1 1 4
0 0 −1 −2 3
0 0 0 0 −1

.

◦ C =


1 12 0 0 0
0 3 0 0 0
−1 5 0 1 2
−11 2 1 1 0
1 −4 1 1 1

.

2. Which of the above matrices are invertible?

3. Consider if the linear transformation

T (x1, x2, x3) = (x1 − x2, x2 + 2x3, 2x1 − x3)

is invertible. If T is invertible, find T−1.

4. Show that the linear transformation

T (x1, x2) = (2x1 − x2, x2 − 2x1)

is not invertible.

5. Find T−1 of the following linear transformation

T (x1, x2, x3, x4) = (x4, x2, x3, x1).



6. Eigenvalues and eigenvectors

Eigenvalues and eigenvectors are important concepts that has long list of
applications. For example, it can be used to transform a differential equation
into a polynomial. In data analytics, eigenvectors represents important infor-
mation that is extracted from a square matrix. This technique is known as
principal component analysis, which is one of the main tool to extract infor-
mation from a large pool of data. In this course, we will see only an immediate
use of eigenvectors in the construction of basis that can be used for storing
large matrix with limited memory.

6.1 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors.
Consider a square n × n matrix. A scalar λ (possibly a complex number
even A is real) is called an eigenvalue of A if there exists a nonzero vector
v (again, possibly complex) for which

Av = λv.

For an eigenvalue λ of A, all nonzero vectors v in which Av = λv are called
eigenvectors of A associated with λ. A pair (λ, v) is called an eigenpair if λ
is an eigenvalue of A and v is an eigenvector associated to λ.

Geometrically, if we regard A as a transformation, then (λ, v) is a pair of
eigenvalue-eigenvector of A if and only if the transformed vector Av lies on
the same line as the original vector v.

Before we proceed to finding eigenvalues and the associated eigenvectors of
a matrix, let us show that eigenvectors associated to each eigenvalue form a
vector space.

Exercise 6.1. Let A be an n × n matrix and λ ∈ R be an eigenvalue of A.
Then the set

Eλ = {0} ∪ {All eigenvectors of λ.} = {v ∈ Rn |Av = λv}
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is a vector space.
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Exercise 6.2. Let A =

[
1 1
0 1

]
. Then λ = 1 is an eigenvalue of A and the

associated eigenvectors are any vectors along the x-axis. Also describe this
geometrically.

A difficulty and a practical way of finding eigenpairs.
When one tries to solve the eigenvalue-eigenvector equation

Av = λv,

a difficulty arises from the fact that both scalar λ and nonzero vector v
are unknown. Hence the right-hand-side product λv implies that the above
equation itself is nonlinear. However, we can rearrange the said equation
into the following form

(A− λI)v = 0. (6.1)
Knowing v ̸= 0, it is necessary to have

det(A− λI) = 0. (6.2)

Notice that the above equation is free of the unknown vector v. Writ-
ing down the determinant further shows that (6.2) is in fact a polynomial.
Hence we may refer to (6.2) as the characteristic polynomial of A. The fun-
damental theorem of algebra then gurantees that (6.2) always has repeatable
n complex solutions (provided that A is of dimension n× n).

Once eigenvalues λ are sorted out from the characteristic polynomial
(6.2), we return to (6.1) with the known λ’s. This makes (6.1) simply a
linear system for each eigenvalues λ.

Finally, let us write down a summary of steps to find all eigenvalues and
eigenvectors of a matrix A:

Step 1. Find all eigenvalues λ’s by solving det(λI − A) = 0.

Step 2. Finding eigenvectors v’s associated to each λ by solving the
linear systems (A− λI)v = 0.
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Exercise 6.3. Let A =

[
0 1
−1 0

]
. Then A has no real eigenvalues.

Exercise 6.4. Find all eigenvalues and eigenvectors of a matrix A =

[
−1 0
2 0

]
.
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Exercise 6.5. Find all eigenvalues and eigenvectors of the following matrices.

A =

 5 −10 −5
2 14 2
−4 −8 6

(a) B =

 5 −6 −6
−1 4 2
3 −6 −4

(b)
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Some properties of eigenvalues-eigenvectors.
Consider a square matrix A.

• If (λ1, v1) and (λ2, v2) are eigenpairs of A with λ1 ̸= λ2, then v1 and
v2 are linearly independent.

• If det(A) = 0, then λ = 0 is one of the eigenvalues of A.

• If λ is an eigenvalue of A, then kλ is an eigenvalue of kA.

• If λ is an eigenvalue of A and n ∈ N, then λn is an eigenvalue of An.

• A and AT have the same eigenvalues.

• If A is invertible and λ is an eigenvalue of A, then λ−1 is an eigenvalue
of A−1.

• If A is a triangular matrix, then eigenvalues of A are the elements in
the diagonal of A.

• If A is symmetric, then all eigenvalues of A are real.

• Let λ1, · · · , λn be all the eigenvalues of A (repeatable), then

n∑
i=1

λi = tr(A) =
n∑

i=1

aii and
n∏

i=1

λi = det(A).

Exercise 6.6. Check the last facts (sum and products of eigenvalues) with
matrices in Exercise 6.5.
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6.2 Eigenbasis

One of the most important features from the eigenpairs is the possiblity
to construct a new meaningful basis, called the eigenbasis, that simplifies the
computation related to a given matrix.

Eigenbasis.
Let A be a square matrix of dimension n × n. If A has linearly inde-
pendent real eigenvectors v1, · · · , vn, then these eigenvectors form a basis
S = {v1, · · · , vn}. This special basis is called the eigenbasis generated by
A. According to the previous section, if A has n distinct real eigenvalues,
then the eigenvectors associated to each eigenvalues will automatically be
linearly independent.

Exercise 6.7. Find the eigenbases associated to each of the following matrices.

A =

 5 −10 −5
2 14 2
−4 −8 6

(a) B =

 5 −6 −6
−1 4 2
3 −6 −4

(b)

C =

1 11 111
0 22 222
0 0 333

(c) D =

1 0 1
0 2 0
1 0 −1

(d)

E =

1 0 1
0 1 1
0 0 1

(e)



7. Change of basis revisited

In this chapter, we revisit bases of a vector space. In particular, suppose
that a basis B is initially chosen for a vector space V and for some reason we
migrate to using another basis B′. In such case, we need to recalculate the
vector x in the representation of B into that of B′. This process turns out to
be a linear transformation.

On the other hand, we used to represent a linear operator T : Rn → Rm with
an m× n matrix AT . This matrix corresponds to the situation where both Rn

and Rm are equipped with the standard bases. However, it is also possible to
tailor-made this matrix representation that would accept and return vectors
promptly in other bases.

7.1 Change-of-basis matrix

In this section, we first see how to find a matrix that maps a representation
from one basis into another basis. This change-of-basis matrix will serve as a
fundamental tool for the further studies especially in this chapter.

Change-of-basis matrix
Suppose that V is an n-dimensional vector space. Let B = {b1, · · · , bn} and
B′ = {b′1, · · · , b′n} be two bases of V .

Let v ∈ V be a vector which is represented in the basis B as

v = α1b1 + α2b2 + · · ·+ αnbn.

In other words, we have v = (α1, · · · , αn)B. To write this vector v in a new
basis B′, i.e. v = (α′

1, · · · , α′
n)B′ , we solve the equation

v = α′
1b

′
1 + α′

2b
′
2 + · · ·+ α′

nb
′
n

for the unknown coefficients α′
1, · · · , α′

n. Putting the two equations above
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together and let

B =

b1 b2 · · · bn

 B′ =

b′1 b′2 · · · b′n



y =

α1
...
αn

 x =

α
′
1
...
α′
n

 ,

we arrive at the casual linear system

B′x = By. (7.1)

Since the vectors b′1, · · · , b′n form a basis, they are linearly independent and
so rank(B′) = n which means (B′)−1 exists. Finally, we may obtain the
unknown coefficients by

x = (B′)−1By.

We conclude the change-of-basis formula as

vB′ = [B ← B′]vB,

where [B ← B′] = (B′)−1B is called the change-of-basis matrix from B
into B′.

To change back from B′ to B, the equation (7.1) can be used again but
this time x is known and y is unknown. Similar analysis yields y = B−1B′x.
We may notice here that we may derive the change-of-basis matrix from B′

to B as
[B′ ← B] = B−1B′.

It is interesting to observe that

[B′ ← B] = B−1B′ = [(B′)−1B]−1 = [B ← B′]−1.

Exercise 7.1. Let V be a vector space and B,B′,B′′ are three bases of V .
Show that [B′′ ← B] = [B′′ ← B′][B′ ← B].
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Exercise 7.2. Consider R2. Let B be the standard basis on R2 and B′ =
{(1, 1), (−1, 1)} be another basis on R2.

(a) Find the change-of-basis matrices [B′ ← B] and [B ← B′].

(b) Write the vector x = (4,−1) in the basis B′.

(c) Write the vector y = (0, 2)B′ in the standard basis.
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Exercise 7.3. Suppose that S is the standard basis of Rn and B be any basis
of Rn. Find the change-of-basis matrices between the two bases S and B.

Exercise 7.4. Consider R3. Let B = {(1, 0, 1), (0, 1, 0), (1, 0, 0)} and B′ =
{(1, 0, 0), (1, 0, 1), (0, 1, 0))} be two bases of R3.

(a) Find the change-of-basis matrices [B′ ← B] and [B ← B′].

(b) Write the vector x = (−1, 1, 2)B in the basis B′.

(c) Write the vector y = (2,−1, 1)B′ in the standard basis.
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7.2 Matrices and linear transformations under different bases

Suppose that we work with Rn with basis B, Rm with basis B′ and an m×n
matrix that links Rn to Rm. Here, we would like to modify an m × n matrix
so that it multiplies with a vector xB and returns a vector yB′ . The same is
asked to linear transformations. We would like to pass a vector of a chosen
basis of Rn into the transformation and instantly get a resulting vector, again,
in a chosen basis of Rm.

Representing a matrix in a chosen bases.
Assume that Rn is equipped with a basis B and Rm is equipped with a
basis B′. Let A be an m× n matrix. Normally, a matrix A multiplies with
a vector x ∈ Rn and returns a vector y ∈ Rm, i.e. y = Ax, where both
spaces are assumably equipped with the standard bases.

If we wants to multiply xB to A, we would need to change xB into the
standard basis representation first, then multiply it to A. If we further need
the resulting vector y in a basis B′, we would need to change the resulting
vector into such a basis. The full process can be concluded in the following

yB′ = [B′ ← S ′]A[S ← B]xB,

where S and S ′ denote the standard bases of Rn and Rm, respectively. From
this equation, we may see that the matrix

AB
B′ = [B′ ← S ′]A[S ← B]

provides a version of the matrix A that multiplies xB and returns yB′ in the
respective bases, as required.

Exercise 7.5. Consider the matrix A =

[
1 −2
0 1

]
. Let B = {(1,−1), (0, 1)}

and B′ = {(0, 1), (1, 0)} be two bases of R2. Find the representation of A that
multiplies a vector in the basis B and results in the basis B′.
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Linear transformations with respect to bases.
Let T : Rn → Rm be a linear transformation. Assume that Rn is equipped
with the basis B and Rm is equipped with the basis B′.

Suppose that AT is the matrix representation of T , then AT multiplies
and results respectively in the standard bases of Rn and Rm. Using a similar
observation, one may see that (AT )

B
B′ provides a way to input and output

vectors with T in required bases. To conclude, we may define the matrix of
T that accepts xB and returns y = T (x) in the basis B′ with

TB
B′(xB) = (AT )

B
BxB = [B′ ← S ′]AT [S ← B]xB = yB′ .

Exercise 7.6. Let T : R2 → R3 be a linear transformation defined by T (x1, x2) =
(x1, 0, x1 + x2). Assume that we equip R2 with the basis B = {(0, 1), (1, 0)}
and R3 with {(1, 0, 0), (1, 1, 0), (0, 0, 1)}. How to define TB

B′?
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Exercise 7.7. Let T : R2 → R2 be a linear transformation defined by

T (x1, x2) =

[
1 −2
−3 1

]
.

Suppose that R2 is equipped with the basis B = {(3, 1), (1, 1)}. Find the
representation of T that accepts and returns vectors in R2 under the basis B.
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Exercise 7.8. Consider a linear transformation T : R3 → R3 defined by

T (x) = Ax =

 5 −10 −5
2 14 2
−4 −8 6

x
 .

Find the representation of T with respect to the eigenbasis of A.

We may observe from the previous exercise that A is a diagonal matrix in the
eigenbasis representation. Moreover, the diagonal elements are the eigenvalues.
This is not only by chance, but happens to all matrices that admit eigenbases.
This process is called diagonalization.

Diagonalization.
Let A be an n × n matrix. Then A is said to be diagonalizable if there is
an n× n invertible matrix U and an n× n diagonal matrix D such that

A = UDU−1.

It is not clear when a matrix is diagonalizable since we need to find
the two unknown matrices U and D. However, we can utilize eigenval-
ues/eigenvectors knowledge to diagoalize a matrix.
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Diagonalization by eigenvalues/eigenvectors.
Suppose that an n × n matrix A has n independent real eigenvectors
v1, · · · , vn which are associated respectively to eigenvalues λ1, · · · , λn.
Then A is diagonalizable and we have

A = V ΛV −1,

where V and Λ are given by

V =

v1 · · · vn

 and Λ =

λ1 0
. . .

0 λn

 .

Exercise 7.9. Diagonalize the following matrices.

A =

[
1 3
3 1

]
(a) B =

1 0 0
0 2 1
0 1 1

(b)
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Being able to diagonalize a matrix allows an easier way to compute matrix
power. Observe first in the next exercise how a diagonal matrix powers up.

Exercise 7.10. Let D = diag(d1, · · · , dn). Show that

Dk = DD · · ·D︸ ︷︷ ︸
k times

= diag(dk1, · · · , dkn).

Knowing the power formula for diagonal matrices, we may observe the fol-
lowing: If A is diagonalizable into A = UDU−1, then

Ak = (UDU−1)(UDU−1) · · · (UDU−1)︸ ︷︷ ︸
k times

= UD [(U−1U)D][(U−1U)D] · · · [(U−1U)D]︸ ︷︷ ︸
k − 1 times

U−1

= UDkU−1.

Exercise 7.11. Let A =

2 0 1
0 1 0
0 0 −1

. Find A10.



8. Quadratic forms

In a multivariate polynomial of variables x1, · · · , xn, the kth degree term is
the one that has products consisting of k variables out of x1, · · · , xn. Among
these, the terms with degree = 2 is of the most importance. These second-
degree terms are exactly the quadratic forms, as we call them in linear algebra.

Quadratic forms.
Consider a vector space Rn. Then a function q : Rn → R is called a
quadratic form on Rn if

q(x) = q(x1, · · · , xn) =
n∑

i,j=1

cijxixj =
n∑

i=1

ciix
2
i +

∑
i ̸=j

cijxixj,

for some cij ∈ R.

Note here that we do not exclude the possibility that cii and dij are all
0, however we shall focus mainly on the case where at least one of them is
nonzero.

Example.

• On the real line R (one variable case), a quadratic form reduces to q(x) =
ax2 where a ∈ R.

• In the two-variable case, we may name the two variables x and y. Then
a quadratic form looks like q(x, y) = ax2 + bxy + cx2, where a, b, c ∈ R.

Exercise 8.1. Let q be a quadratic form on Rn. Show that there exists a
symmetric n× n matrix A such that q(x) = xTAx.

88
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Exercise 8.2. Consider the quadratic form

q(x, y) = 2x2 + 3xy + y2.

Find the symmetric matrix A in which q(X) = XTAX where X = (x, y).

Exercise 8.3. Write down the quadratic form

q(x1, x2, x3) = 2x2
1 − x2x3 + x1x3 + x2

3

in the vector-matrix form.
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As we seen above, every matrix gives rise to a quadratic form and vice versa.
The sign of the associated quadratic form then defines the sign or positivity of
that matrix.

Positivity (or sign) of a matrix.
The positivity of a matrix plays a fundamental role of how a quadratic form
behavee geometrically. Let A be a symmetric n× n matrix. We say that A
is

• positive semidefinite if xTAx ≥ 0 for all x ∈ Rn;

• positive definite if xTAx > 0 for all x ∈ Rn \ {0};
• negative semidefinite if −A is positive semidefinite;

• negative definite if −A is positive definite;

• indefinite if it is neither one from above.

It is not ideal for to verify positivity of a matrix using the above definition
since the sign of xTAx have to be tested at all x. This is where eigenvalues
can be helpful, as they fully characterized the positivity of A.

Eigenvalue criteria for positivity.
Let A be a symmetric n× n matrix. Then

• A is positive semidefinite ⇐⇒ all eigenvalues of A are ≥ 0;

• A is positive definite ⇐⇒ all eigenvalues of A are > 0;

• A is negative semidefinite ⇐⇒ all eigenvalues of A are ≤ 0;

• A is negative definite ⇐⇒ all eigenvalues of A are < 0;

• A is indefinite ⇐⇒ A has both positive and negative eigenvalues.

Exercise 8.4. Determine the positivity of the following matrices.

A =

[
1 3
3 1

]
(a) B =

[
3 −2
−2 3

]
(b)

C =

4 0 0
0 3 0
0 0 1

(c) D =

1 2 1
2 −1 9
1 0 0

(d)
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Convexity of quadratic functions and extremities.
A quadratic function of n variables is a function f : Rn → R of the form

f(x1, · · · , xn) = f(x) = xTAx+ bTx+ c

for some A ∈ Rn×n, b ∈ Rn and c ∈ R. The quadratic part of this function
is actually the quadratic form xTAx. The positivity of this term actually
determines how the graph of this quadratic function would look like. To be
precise, we have the following conclusions:

• f is convex if A is positive semidefinite;

• f is concave if A is negative semidefinite;

• f is a saddle surface if A is indefinite;

Extremities of quadratic functions.
If f is a quadratic function given by the formula f(x) = xTAx+ bTx+ c,
then the following criteria hold:

• If f is convex, then f can only have minimizers which can be found
by solving the linear system Ax = − b

2
.

• If f is concave, then f can only have maximizers which can be found
be solving the linear system Ax = − b

2
.

• If f is a saddle surface the it has neither a minimizer or a maximizer.

Note that none of the above criteria guarantees an existence.

Exercise 8.5. Let A =

2 1 2
1 2 1
2 1 2

 and b =

 1
−1
1

 and c = −2 and consider

the quadratic function f(x) = xTAx+ bTx+ c.

(a) Classify the type of extreme points of f .

(b) Find all extreme points of f .

(c) Replace b with b0 =

 1
−1
0

 and repeat (a) and (b).



9. Dot product, norm and orthogonality

In this chapter we concern with some geometry on vector spaces. Geometry
in this context refers to measurements, where we mainly consider length and
angle.

9.1 Dot products and norms.

Dot product.
Consider the space Rn. The dot product on Rn, denoted by ·, is defined
between two vectors u, v ∈ Rn by

u · v =
n∑

i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.

This dot product enjoys the following fundamental properties for all vectors
x, y, z ∈ Rn and all scalars α, β ∈ R:

(1) x · x ≥ 0 and x · x = 0 ⇐⇒ x = 0;

(2) x · y = y · x;

(3) (αx+ βy) · z = α(x · z) + β(y · z).
Note that the above three conditions are the defining properties of the more
general notion, which can defined on any (real) vector space, called inner
product. Actually, any positive semidefinite matrix Q can be used to define
an inner product by x ·Q y = xTQy.

Norm.
Consider the space Rn. The norm of any vector x ∈ Rn is defined by

∥x∥ =
√
x · x =

√
x2
1 + x2

2 + · · ·+ x2
n =

(
n∑

i=1

x2
i

)1/2

.
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This norm enjoys the following properties for all vectors x, y ∈ Rn and all
scalars α ∈ R:

(1) ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0;

(2) ∥αx∥ = |α|∥x∥;
(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Again, these three conditions are the defining properties of a more general
notion, also called a norm. Any function enjoying these three properties are
called a norm, and this can be defined on any vector spaces. Moreover, if
V is equipped with an inner product x · y, then the norm is always defined
by ∥x∥ =

√
x · x.

In general, we interpret ∥x∥ as the length or magnitude of the vector x.
We can also use the norm to indirectly measure the distance between two
vectors, namely x and y, by measuring the length of x − y. That is, the
distance between x and y is d(x, y) = ∥x− y∥.

Exercise 9.1. Consider two vectors u = (3, 0, 1) and v = (−2, 1, 2).

Find u · v.(a) Find ∥u∥ and ∥v∥.(b)

Find how far is u from v.(c) Verify that ∥u± v∥ ≤ ∥u∥+ ∥v∥.(d)

We have discussed that a norm can be defined on any vector space. In fact,
there can even be more than one norm on the same space depending on which
norm is appropriate with the context. We hereby provide a few examples of
norms on Rn itself as well as on the space Rm×n of m× n matrices.
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Exercise 9.2. Consider Rn and let p ∈ [1,+∞). The p-norm on Rn is defined
by

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Moreover, the ∞-norm on Rn is defined by

∥x∥∞ = max
1≤i≤n

|xi|.

Let u = (1,−1) and v = (3,−2). Find ∥u∥1, ∥v∥3 and ∥u+ v∥∞.

Another important instant can be found in the space of matrices. The fol-
lowing examples are typical norms that are used frequently in practice.

Example. Let Rm×n be the vector space of all m× n matrices.

• For p ∈ [1,+∞), the Frobenius p-norm is defined by

∥A∥p =

 ∑
i=1,··· ,m
j=1,··· ,n

|aij|p


1/p

.

• The Frobenius ∞-norm if defined by

∥A∥∞ = max
i=1,··· ,m
j=1,··· ,n

|aij|.
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• Suppose that Rn and Rm are equipped with the norm ∥ · ∥Rn and ∥ · ∥Rm ,
respectively. Then the relative norm for any matrix A ∈ Rm×n is given
by

∥A∥ = max
x∈Rn\{0}

∥Ax∥Rm

∥x∥Rn

.

9.2 Angle between two vectors and orthogonality

It is more interesting to see how dot products could help in geometric un-
derstanding of a vector space.

Angle between two vectors.
Suppose that V is a real vector space that has an inner product x · y and
norm ∥x∥ =

√
x · x. Then the two notions are linked by the equation

x · y = ∥x∥∥y∥ cos θ,

where θ is the angle between the two vectors x and y in V . Note that the
angle θ is only defined when both x and y are nonzero vectors. Rearranging
this equation gives

θ = arccos

(
x · y
∥x∥∥y∥

)
.

With the given formula, we observe that x · y = 0 if and only if either:

• one of the vectors is zero, or

• both vectors are nonzero and they are othogonal, i.e. θ = π
2
.

Hence, we conclude the orthogonality condition as follows.

Orthogonality criterion.
Two nonzero vectors x and y are orthogonal if and only if x · y = 0.

Exercise 9.3. Let x = (0, 0, 1), y = (1, 1, 1) and z = (0, 1, 0).

(a) Find the angle between x and y.

(b) Find the angle between x and z.

(c) Find the angle between y and z.
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Orthogonal family.
Let U = {v1, v2, · · · , vk} be a set containing vectors in a vector space
V with inner product. We say that U is an orthogonal family (or
pairwise orthogonal) if vi · vj = 0 for all i, j with i ̸= j.

Exercise 9.4.
Let U = {(1, 0, 1), (0, 1, 0), (−1, 0, 1)} and V = {(1, 0, 1), (0, 0, 1), (0, 1, 0)}.
• Show that U is an orthogonal family.

• Show that V is not an orthogonal family.

Exercise 9.5. Show that if U = {v1, · · · , vk} is an orthogonal family, then it
is linearly independent.
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9.3 Orthogonal projection

Flavor of another vector – Orthogonal projection.
Let u and v be two vectors in a vector space V with dot product. Looking
at them geometrically, the vector u may have some hint of the information
given by the other vector v. We illustrate this idea by setting u = (1, 0)
and v = (1, 1). Eventhough they are linearly independent, the vector v still
has a flavor of leaning to the east which is the direction of u. On the other
hand, if we take w = (0, 1) as the vector pointing to the north, then v also
leans as well towards the direction of w. Intuitively, the flavor of u that is
contained in the vector v is called the projection of v onto u.

The orthogonal projection of u onto v is defined by

projv u = (u · v) v

∥v∥2
.

With the above description, we observe that u has no flavor of v means
the two vectors are orthogonal. If projv u describes the flavor of v contained
in u, removing this part from u should leave the result free of v. This could
be observed by

(u− projv u) · v = u · v − projv u · v

= u · v − (u · v) v

∥v∥2
· v

= u · v − (u · v) v · v
∥v∥2

= u · v − u · v
= 0.

This observation will serve as the fundamental for the Gram-Schmidt pro-
cess in the next section, where we orthogonalize a given basis.

Exercise 9.6. Let u = (1, 0) and v = (1, 1). Find projv u and u− projv u.
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Exercise 9.7. Let u = (1,−1, 2), v = (0, 2, 0) and w = (1, 0,−1).
(a) Compute y = u− projv u.

(b) Compute z = u− projv u− projw u.

(c) Show that y is orthogonal to v but not to w.

(d) Show that z is orthogonal to both v and w.



Introductory Applied Linear Algebra | Parin Chaipunya 99

9.4 Gram-Schmidt orthogonalization process

Motivated by the observation made in the previous section, we present now
a process called Gram-Schmidt orthogonalization process which creates an or-
thogonal basis out of any basis by removing the flavor of all the previous basis
elements.

Recall first that a basis for a vector space is said to be an orthogonal basis
if it is also an orthogonal family.

Gram-Schmidt orthogonalization process
Let V be a vector space with dot product and let U = {v1, · · · , vn} be a
basis of V . We define

v′1 = v1

v′2 = v2 − projv′1 v2

v′3 = v3 − projv′2 v3 − projv′1 v3
...

v′i = vi − projv′i−1
vi − · · · − projv′1 vi

...
v′n = vn − projv′n−1

vn − · · · − projv′1 vn.

Then the family U ′ = {v′1, · · · , v′n} is an orthogonal basis for V .

Exercise 9.8. Consider R2 with the basis U = {(1,−3), (−1, 0)}. Use the
Gram-Schmidt process to create an orthogonal basis from U .
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Exercise 9.9. Consider R3 with the basis B = {(1, 0, 0), (1, 0, 1), (0,−2, 0)}.
Orthogonalize B using the Gram-Schmidt process.



10. Some applications

In this chapter, we discuss some applications of linear algebra, particularly
on solving least squares problems that are solved through linear systems. To
be more precise, we shall be talking about (1) least-square solution of an in-
consistent linear system, and (2) linear regression approached from least mean-
square-error perspective.

10.1 Least-sqaure solution of an inconsistent linear system

Recall that a linear system Ax = b is called inconsistent if it has no solution.
This happens if and only if rank(A) < rank([A b]). When a linear system is
inconsistent, we usually seek a relaxed solution x in the sense that Ax best
approximates b.

Least-square solution.
A vector x is called the least-square solution of the linear system Ax = b if
x minimizes the squared norm ∥Ax− b∥2.

We shall now verify that

• The least-square solution is valid for any linear system.

This could be addressed by observing that

∥Ax− b∥2 = (Ax− b)T (Ax− b)

= (xTAT − bT )(Ax− b)

= xTATAx− bTAx− xTAT b+ bT b

= xT (ATA)x− 2(AT b)Tx+ bT b,

which shows that the minimum-norm solution is a finding a minimum
of a quadratic function. Moreover, we know that

xT (ATA)x = (xTAT )Ax = (Ax)T (Ax) = ∥Ax∥2 ≥ 0

for all x, hence ATA is positive semidefinite and that underlying
quadratic function is convex and the context of minimizing ∥Ax − b∥
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is relevant. Finally, finding the least-square solution of Ax = b is
equivalent to solving the following linear system

ATAx = AT b.

• If Ax = b is consistent, then the least-square solution and the tradi-
tional solution are the same.

This can be simply deduced as any traditional solution x gives ∥Ax−
b∥ = 0, minimizing the least squares.

Exercise 10.1. Consider the linear system

2x1 + 3x2 = 2

x1 − x2 = 1

x1 + 4x2 = 0

(a) Show that this system has no solution.

(b) Find the least-square solution.
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Exercise 10.2. Show that the following system has no traditional solution
and, instead, find the least-square solution

x1 + x2 = 0

2x1 + x3 = 2

x2 − x3 = −1
x1 + x3 = 1.
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10.2 Linear regression

Regression is a statistical tool that is used to find the function of a particular
class that fits best to the observed data. In this course, we only focus on the
linear regression which means that we would like to fit an affine function to
the observed data.

1-Dimensional linear regression.
Let us first consider the 1-dimensional case. This means that the observed
data yi depends linearly on a single controlled variable xi, i.e.

yi ≈ axi + b

for some good choice of a ∈ R and b ∈ R.

Suppose that we make m observations at controlled variable x1, · · · , xm

where we observed the value y1, · · · , ym, respectively. This could be pre-
sented as a table

Controlled variable (x) Observed data (y)
x1 y1
x2 y2
...

...
xm ym

For any a, b ∈ R, we expect to have the approximation yi ≈ axi + b
with the least mean-square error (MSE ). The MSE between the actual
observation yi and the predicted value axi − b can be computed by

MSE =
√

(y1 − (ax1 + b))2 + (y2 − (ax2 + b))2 + · · ·+ (ym − (axm + b))2

Putting y = (y1, · · · , ym), x = (x1, · · · , xm), 1 = (1, · · · , 1︸ ︷︷ ︸
m times

), A = [x;1] and

u = (a, b), we can further simplify the MSE formula above into

MSE = ∥y − (ax+ b1)∥2

= ∥y − [x 1]u∥2

= ∥Au− y∥2.
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This implies the MSE reduces to a squared norm with a linear system
inside. Therefore, selecting u = (a, b) that minimizes the MSE is finding
a least-square solution to the system Au = y. Finally, the parameter u =
(a, b) can be determined by solving the linear system

ATAu = ATy.

Exercise 10.3. A scientist is experimenting a new drug that slows down the
growth of certain species of bacteria under a controlled environment. The
procedures are as follows: The initial colony of 1 CFU (colony-forming unit)
is deployed in an agar plate. For 60 minutes, the scientist will observe the
number of bacterial cells every 5 minutes. The following is the observed data

Observed time (min.) Number of bacterial cells (CFU)
0 1
5 1.45
10 2.02
15 2.5
20 2.97
25 3.49
30 3.92
35 4.55
40 5.11
45 5.60
50 6.13
55 6.64
60 7.23

Write the linear system for the linear regression that estimate the data in
the above table.
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