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How to use this text.

This text is designed for an undergraduate course MTH382 at King Mongkut’s Univer-

sity of Technology Thonburi (KMUTT). Throughout the lecture note, we shall encounter

several examples, problems, and exercises. Examples are meant to be solved together

by the lecturer (me!) and students. Problems are meant to be solved by the students

during the class. Lastly, Exercises are practice problems that the students should try

to solve outside of class hours.

We adopt the following conventions throughout this lecture note:

Notations Meaning

R The real line.

N The set of positive integers.

2A The power set of A.

#A The cardinality of A.

A∁ The complement of A.

A ⊂ B A is a subset of B, with the possibility that A = B.

A ⊎B The union of two disjoint sets A and B.⊎
λ∈ΛAλ The union of a pairwise disjoint collection of sets {Aλ}λ∈Λ.

Completion of a proof (QED).

▲ COmpletion of an example.

Course topics
◦ Probability space.

◦ Conditional Probability.

◦ Probability distribution.

◦ Joint probability distribution.

◦ Random variable.

◦ Expected value and variance.

◦ Moment-generating function.

◦ Characteristic functions.

◦ Brancing process.

◦ Random sum.
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◦ Central limit theorem.

◦ Basic Markov chain.

◦ Applications to finance and actuarial science.

Contents

Contents iii

1 Soft landing on probability 1

1.1 Counting models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Describing a probability space . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The formal introduction to probability 9

2.1 Outcomes and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Probability measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Zero-probability events and almost sure events . . . . . . . . . . . . . . . 18

2.4 Independent events and conditional probability . . . . . . . . . . . . . . 19

2.5 Bayes’ rule for partitions and scenario trees . . . . . . . . . . . . . . . . . 21

3 Discrete random variables 28

Bibliography 29

iii



Chapter 1. Soft landing on probability

Probability theory is a mathematical theory that helps dealing with uncertain nature

of the world. The uncertainty here may range from coin flipping, dice rolling, casino

games, stock prices, accidents, weather conditions, human behaviors, and much more.

Being able to systematically and mathematically capture the randomness, probability

theory is used in vast applications including finance, risk management, insurance, game

theory, resource management, etc.

The subject can be studied with varying level of depths — the counting-based prob-

ability theory is studied in high schools, while the theory itself can be so deep that it

involves measure and theory of integration, and functional analysis. This lecture note

aims to provide a balance mix between the theoretical and practical perspectives of

probability theory, with some examples and use cases from finance and insurance. The

audience will require some background on combinatorics, calculus, set theory, and some

basics of proofs in order to effectively follower the course.

This chapter’s objective is twofold — firstly, to give a brief refreshment to probability

with counting models, and secondly to shape the intuition for the formal probability

spaces with an emphasis on the event space through examples.

1.1. Counting models

Before we actually start, let us fix some terminlogy. Each random phenomena (or

experiment) is resulted with an outcome. It is agreed that all the possible outcomes of a

random phenomena is known, but the true outcome is not known. The set Ω containing

all possible outcomes is called the sample space. In this section (only), Ω will always be

a finite set, and any subset A of Ω is an event. We shall see later that, in general, not

every subset of Ω is an event. The probability that an outcome belongs to an event A

can then be calculated by

P (A) =
#A

#Ω
.

Example 1.1. A set of number cards consists of 10 cards with different faces 0, 1, . . . , 9.

A person is to randomly pick one card from this set. What is the probability that the

drawn card has an odd number on it ?
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The event that the drawn card has an odd face is described by

Odd = {1, 3, 5, 7, 9}.

Thus we have

P (Odd) =
#Odd

#Ω
=

5

10
=

1

2
. ▲

Example 1.2. Three cards are numbered with 1, 2, 3. A person randomly arrange them

linearly.

◦ Find the number of all possible outcomes.

Solution. We shall represent each outcome with ω = (a, b, c), where a, b, c denote

respectively the faces of the first, second, and third cards. The sample space Ω

consists of all permutations of 1, 2, 3, so that #Ω = 3 ! = 6.

◦ What is the probability that the middle card has even face ?

Solution. Let us write Even to denote the event that the middle card is even, which

gives Even = {(1, 2, 3), (3, 2, 3)}. Hence

P (Even) =
#Even

#Ω
=

2

3 !
=

1

3
.

◦ What is the probability that the middle card has odd face ?

Solution. Let us write Odd to denote the event that the middle card is odd, resulting

with

Odd = {(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2)}.

We then obtain

P (Odd) =
#Odd

#Ω
=

2

3
. ▲

Example 1.3. A jar contains 3 black balls, 2 red balls, and 4 white balls. A person

draws two balls from the jar, one after another without replacing.

◦ How many possible outcomes are there ?

Solution. As usual, we denote with Ω the set of all possible outcomes. An outcome

of this problem is represented by ω = (a, b), where a and b denotes respectively the

outcomes of the first and second balls. There are 9 ways to choose the first balls,

and 8 ways to choose the second balls. Thus #Ω = 9× 8 = 72.

◦ What is the probability that the first ball is red ?

Solution. We write {a = red} to denote the event where the first draw is a red ball.

We have #{a = red} = 3× 8 = 24 and finally

P ({a = red}) = #{a = red}
#Ω

=
24

72
=

1

3
.

◦ What is the probability that the second ball is white ?
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Solution. We write the event by {b = white}. To effectively compute its cardinality,

we partition this set into

{b = white} = {a = white, b = white}︸ ︷︷ ︸
The first ball is white and
the second ball is white.

∪{a ̸= white, b = white}︸ ︷︷ ︸
The first ball is not white but

the second ball is white.

and since both sets are disjoint, we get

#{b = white} = #{a = white, b = white}︸ ︷︷ ︸
=4×3

+#{a ̸= white, b = white}︸ ︷︷ ︸
=5×4

= 4× 3 + 5× 4 = 32.

Finally we obtain

P ({b = white}) = #{b = white}
#Ω

=
4

9
.

◦ What is the probability that at least one of the balls is black ?

Solution. We first argue that the event {a = black or b = black} can be decomposed

disjointly as

{a = black or b = black} = {a = black, b ̸= black}
∪ {a ̸= black, b = black}
∪ {a = black, b = black}.

This leads to

#{a = black or b = black} = #{a = black, b ̸= black}︸ ︷︷ ︸
=3×6

+#{a ̸= black, b = black}︸ ︷︷ ︸
=6×3

+# {a = black, b = black}︸ ︷︷ ︸
=3×2

= 42.

Finally we get

P ({a = black or b = black}) = 42

72
=

7

12
. ▲

Example 1.4. A jar contains 3 black balls, 2 red balls, and 4 white balls. A person

draws two balls from the jar, one after another with the balls returned to the jar.

◦ How many possible outcomes are there ?

Solution. Both balls can be drawn from the jar in 9 ways. Hence the sample space Ω

consists of #Ω = 9× 9 = 81 elements.
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◦ What is the probability that none of the balls is red ?

Solution. Following the same notation of the previous examples, we may obtain

#{a ̸= red, b ̸= red} = 7× 7 = 49.

Then we conclude that P (#{a ̸= red, b ̸= red}) = 49
81
.

◦ What is the probability that at least one of the balls is read ?

Solution. It is noticeable that this event is the complement of #{a ̸= red, b ̸= red},
so that the corresponding probability is 1− 49

81
= 32

81
.

◦ What is the probability that after the two draws, one ball is black and the other one

is red ?

Solution. This event, denoted by A, can be partitioned into two disjoint cases. In

Case 1, the first draw gives a black ball and the second one is red. This case covers a

possibility of 3× 2 = 6 outcomes. In Case 2, the first draw is red and the second one

is black. This gives another 2× 3 = 6 cases. Finally, the enumeration of this event is

#A = 6︸︷︷︸
Case 1

+ 6︸︷︷︸
Case 2

= 12,

which imples that P (A) = 12
81
. ▲

Example 1.5. A jar contains 3 black balls, 2 red balls, and 4 white balls. A person

draws two balls, at the same time, from the jar.

◦ How many possible outcomes are there ?

Solution. Let Ω be the sample space, whose cardinality is computed with the binomial

formula

#Ω = C9,2 =

(
9

2

)
=

9 !

2 ! 7 !
= 36.

◦ What is the probability that both balls are white ?

Solution. We denote such an event with WW and we have #WW =
(
4
2

)
= 6. We thus

have P (WW) = 6
36

= 1
6
.

◦ What is the probability that one of the ball is black and the other one is red.

Solution. We denote such an event with A ⊂ Ω, and enumerate such an event by

#A =

(
3

1

)
︸︷︷︸

Black balls.

×
(
2

1

)
︸︷︷︸

Red balls.

= 6.

Subsequently P (A) = 6
36

= 1
6
.

◦ What is the probability that exactly one of the two balls is white ?

Solution. Let B denote such an event. Then B can be enumerated by

#B = 4︸︷︷︸
White balls.

× 5︸︷︷︸
Non-white balls.

= 20,

which gives P (B) = 20
36

= 5
9
.
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◦ What is the probability that at least one of the two balls is black ?

Solution. Let C denote such an event. We focus instead of C∁ which represents the

event where both balls are not black. Hence we get

#C∁ =

(
6

2

)
︸︷︷︸

Non-black balls.

= 15,

implying that

P (C) = 1− P (C∁) = 1− 15

36
=

7

13
. ▲

Example 1.6. A jar contains 3 black balls, 2 red balls, and 4 white balls. A person

draws four balls, at the same time, from the jar.

◦ How many possible outcomes are there ?

Solution. Let Ω be the sample space, whose cardinality is computed with the binomial

formula

#Ω =

(
9

4

)
=

9 !

4 ! 5 !
= 126.

◦ What is the probability that two of the balls are black and the other two are white ?

Solution. Let A denote such an event. We then have

#A =

(
3

2

)
︸︷︷︸

Black balls.

×
(
4

2

)
︸︷︷︸

White balls

= 18,

which yields P (A) = 18
126

= 1
7
.

◦ What is the probability that at least two of the balls have the same color ?

Solution. We denote such an event with B. We get

#B =

(
3

2

)(
6

2

)
︸ ︷︷ ︸
2 black balls.

+

(
3

3

)(
6

1

)
︸ ︷︷ ︸
3 black balls.

+

(
2

2

)(
7

2

)
︸ ︷︷ ︸
2 red balls.

+

(
4

2

)(
5

2

)
︸ ︷︷ ︸
2 white balls.

+

(
4

3

)(
5

1

)
︸ ︷︷ ︸
3 white balls.

+

(
4

4

)
︸︷︷︸

4 white balls.

and the probability P (B) can be calculated using a similar formula. ▲

1.2. Describing a probability space

We have seen in the previous section that an event is a subset of the sample space.

However, not every subset is considered as an event. In this section we shall motivate

ourselves, through examples, to get closer to the formal definition of a probabilistic

space. The rigorous analysis of this definition, however, will be postponed until the

Chapter 1.

To describe a probability space, three ingredients are required:

◦ a sample space Ω containing all possible outcomes,

◦ a event space F ⊂ 2Ω containing all observable events,
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◦ a probability measure P : F → [0, 1], assigning to each event a numerical value between

0 and 1 representing its probability.

Again, we insist that it might be impossible to assign a probability to every subset of

Ω. This behavior is typical in measure theory, but is also quintessential in probability

theory. One could see from the following example that a probability could not be

practically assigned to some events.

Example 1.7. Consider tossing two identical coins simultaneously.

◦ The sample space is Ω = {(H,H), (H,T)(T,H), (H,H)}, where the first (second) coor-

dinate corresponds to the first (second) coin. Here H and T denote respectively the

Head and Tail of each coin.

◦ The base events are

{(H,H)}︸ ︷︷ ︸
Both coins show heads.

, {(T,T)}︸ ︷︷ ︸
Both coins show tails.

, {(H,T), (T,H)}︸ ︷︷ ︸
Two coins show different sides.

but we could also observe the secondary events including their (countable) comple-

ments, unions and intersections. Indeed, the event space in this case consists of such

base events and their secondary events.

◦ Based on counting principles, we obtain that

P ({(H,H)}) = 1

4
P ({(T,T)}) = 1

4
P ({(H,T), (T,H)}) = 1

2
.

The probability of the secondary events could be computed likewise.

Make a note that it is impossible, and is not even practical, to assign a probability

to the set {(H,T)}. The fact that the two coins are tossed simultaneously makes it

impossible to distinguish between the two. Hence it is not possible to observe the

difference between the outcomes (H,T) and (T,H). It is, therefore, does not make sense

to assign a probability to an unobservable event. ▲

Example 1.8. Mr.Ali tosses two fair coins simultaneously and Mr.Charlie observes the

outcome and inform to Mr.Ali the parity of the toss, i.e. whether the two coins show

the same face. Mr.Ali has the following in his probability space.

◦ The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}, where H and T stand for

Head and Tail, respectively, and the ordered pair represents the outcomes of the first

and second coin in their respected orders.

◦ The event space F includes the two base events as well as their unions and intersec-

tions, so that

F = {Similar,Different,∅,Ω}.

◦ The probability assigned to each event is defined by

P (Similar) = P (Different) =
1

2
, P (∅) = 0, P (Ω) = 1. ▲
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Example 1.9. Consider the tossing two fair coins in sequence. This time we focus on

observing the outcomes of each toss.

◦ The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}.
◦ Let us write the outcomes in the form (X1,X2). The base events in questions are

{X1 = H} = {(H,H), (H,T)}︸ ︷︷ ︸
The first toss is H.

, {X1 = T} = {(T,H), (T,T)}︸ ︷︷ ︸
The first toss is T.

,

{X2 = H} = {(H,H), (T,H)}︸ ︷︷ ︸
The second toss is H.

, {X2 = T} = {(H,T), (T,T)}︸ ︷︷ ︸
The second toss is T.

.

◦ The full event space is formed by all unions and intersections of these base events.

◦ The probability assigned to each base event is defined by

P ({X1 = H}) = P ({X1 = T}) = P ({X2 = H}) = P ({X2 = T}) = 1

4
. ▲

Example 1.10. We consider dice rolling and focus on the “Odd – Even” scenarios.

◦ The sample space is Ω = {1, 2, 3, 4, 5, 6}, which contains all the possible outcomes of

a dice roll.

◦ We consider two base events, namely Odd = {1, 3, 5} and Even = {2, 4, 6}.
◦ The events are Odd and Even themselves, as well as

∅ = Odd ∩ Even︸ ︷︷ ︸
Odd and even at the same time.

and Ω = Odd ∪ Even︸ ︷︷ ︸
Odd or even.

.

This means the full event space is

F = {Odd,Even,∅,Ω}.

◦ The probability is then assigned to each event as

P (Odd) = P (Even) =
3

6
, P (∅) = 0, P (Ω) = 1. ▲

Example 1.11. In this example, we consider the “Odd – Even – High – Low” scenarios

for dice rolling.

◦ The sample space is again Ω = {1, 2, 3, 4, 5, 6}.
◦ We consider two base events, namely Odd = {1, 3, 5} and Even = {2, 4, 6}.
◦ The events are Odd, Even, High and Low themselves, as well as ∅, Ω and additionally

their unions and complements.

◦ The probability is then assigned to each event as

P (Odd) = P (Even) = P (High) = P (Low) =
3

6
, P (∅) = 0, P (Ω) = 1

and

P (Odd ∩ High) = P (Even ∩ Low) =
1

6
, P (Odd ∩ Low) = P (Even ∩ High) =

1

2
,

P (Odd ∪ High) = P (Even ∪ Low) =
5

6
, P (Odd ∪ Low) = P (Even ∪ High) =

4

6
. ▲
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Example 1.12. Don Juan has two girlfriends, Amy and Betty, and he is now considering

marrying one of them. Being a womanizer, we could not decide who to marry so he

plans to make a phone call to each of them. Here are the rules of this marriage:

a. Don Juan makes the first call to one of the two girlfriends at random based on a

coin toss.

b. Each girlfriend does not know if she got the first or second call.

c. Each girlfriend either accept or reject the proposal at random based on a coin toss.

d. If the girlfriend of the first call accepted the proposal, they get married and live

happily everafter.

e. If the girlfriend of the first call rejected the proposal, then Don Juan makes the

second call to the other girlfriend.

Let Y and N denote respectively the acceptance and rejection of either Amy or Betty.

The sample space is given by

Ω =



(Amy,Y)︸ ︷︷ ︸
Amy is called first
and she accepted.

, (Betty,Y)︸ ︷︷ ︸
Betty is called first
and she accepted.

,

(Amy,N,Betty,Y)︸ ︷︷ ︸
Amy is called first, she rejected.

Betty is then called and she accpeted.

, (Amy,N,Betty,N)︸ ︷︷ ︸
Amy is called first, she rejected.

Betty is then called and she rejected.

,

(Betty,N,Amy,Y)︸ ︷︷ ︸
Betty is called first, she rejected.

Amy is then called and she accpeted.

, (Betty,N,Amy,N)︸ ︷︷ ︸
Betty is called first, she rejected.

Amy is then called and she rejected.


.

Let us observe the event spaces from the viewpoints Don Juan, Amy, and Betty.

◦ Don Juan knows exactly the call sequence as well as the answers of each call. Therefore

the event space that represents his information is the whole power set, that is

FDJ = 2Ω.

◦ From the angle of Amy, she only knows whether Don Juan called and whether she

accepted or rejected. Hence the event space that represents her information is

FAmy = σ


{(Amy,Y), (Betty,N,Amy,Y)}︸ ︷︷ ︸

Amy got a call and said yes.

, {(Amy,N), (Betty,N,Amy,N)}︸ ︷︷ ︸
Amy got a call and said no.

,

{(Betty,Y)}︸ ︷︷ ︸
Amy did not get a call.

 .

It should be noted that Amy could not tell if she was called first or second.

◦ Similar to Amy, Betty only knows whether Don Juan called and also her answer to

the call. This means her event space that represents her information is

FBetty = σ


{(Betty,Y), (Amy,N,Betty,Y)}︸ ︷︷ ︸

Betty got a call and said yes.

, {(Betty,N), (Amy,N,Betty,N)}︸ ︷︷ ︸
Betty got a call and said no.

,

{(Amy,Y)}︸ ︷︷ ︸
Betty did not get a call.

 .

Again, Betty could not tell if she was the first or the second choice. ▲



Chapter 2. The formal introduction to probability

In this section, we move further to introduce the formal definition of a probability

space and prove some of its fundmental properties.

2.1. Outcomes and events

The first two concepts that we need for a probability space are the outcomes and

events. One may think of an outcome as a result of a random phenomena or a random

experiment. The set containing all possible outcomes ω is called the sample space Ω.

An event, on the other hand, is a subset of Ω that represents a situation in which a

probability will be assigned. We say that an outcome ω realizes the event A if ω ∈ A.

In practice, we may not be able to assign probability values to all subsets A ⊂ Ω

(see e.g. Example 1.12). Even in theory, doing so might lead to some strange unwanted

situations as well. Hence we make a requirement that the interested events constitute

a nicely behaved collection called a σ-field.

Definition 2.1. Let Ω be a nonempty set. A family F ⊂ 2Ω is called a σ-field (also

called a σ-algebra) over Ω if the following conditions are satisfied:

(σ1) Ω ∈ F.

(σ2) If A ∈ F, then A∁ := Ω \ A ∈ F.

(σ3) If Ai ∈ F for each i ∈ N, then
⋃∞

i=1Ai ∈ F.

The pair (Ω,F), in the language of measure theory, is known as a measurable space.

Immediately from the definition, we have the following proposition.

Proposition 2.2. Let (Ω,F) be a measurable space. Then the following conditions hold:

(a) ∅ ∈ F.

(b) If Ai ∈ F for each i ∈ N, then
⋂∞

i=1 ∈ F.

(c) If A,B ∈ F, then A ∪B ∈ F and A ∩B ∈ F.

(d) If A,B ∈ F, then A \B ∈ F.

Proof. (a) Since Ω ∈ F, (σ2) implies that ∅ = Ω∁ ∈ F.

(b) For each i ∈ N, define
Bi = A∁

i ∈ F.

9
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Using (σ2) and (σ3), we obtain

∞⋂
i=1

Ai =
∞⋂
i=1

B∁
i =

(
∞⋃
i=1

Bi

)∁

∈ F.

(c) Let A,B ∈ F. Then the result is obtained from (σ3) and (b) by setting A1 :=

A, Ai = B for i = 2, 3, . . . .

(d) This follows since B∁ ∈ F and that A \B = A ∩B∁.

Let us provide some first examples.

Example 2.3. Let Ω be a nonempty set.

◦ F0 = {∅,Ω} is the smallest σ-field over Ω, known as the trivial σ-field.

◦ F∞ = 2Ω is the largest σ-field over Ω, known as the gross σ-field.

Here, F0 and F∞ are the weakest and the strongest σ-fields, respectively, in the sense

that

F0 ⊂ F ⊂ F∞

for any σ-field F over Ω.

◦ Let Ω = {a, b, c, d}. Then F = {∅, {a, b}, {c, d},Ω} is a σ-field over Ω.

◦ For any Ω and A ⊂ Ω, the set {∅, A,A∁,Ω} is a σ-field.

◦ For any Ω and a nonempty subset A ⊂ Ω, the family {∅, A,Ω} is not a σ-field.

◦ Consider an interval Ω = (0, 1]. Then

F = {∅, (0, 0.25], (0.25, 0.5], (0, 0.5], (0.25, 1], (0.5, 1], (0, 0.25] ∪ (0.5, 1], (0, 1]}

is a σ-field over Ω. ▲

The following propositions serve as some more sophistcated examples of a σ-field.

Proposition 2.4. Let Ω be a nonempty set and let

A = {A ⊂ Ω | either A or A∁ is countable}.

Then A is a σ-field over Ω.

Proof. It is clear that Ω ∈ A since its complement Ω∁ = ∅ is countable. It is also

obvious that, if A ∈ A, then A∁ ∈ A. Now, let Ai ∈ A for each i ∈ N. Then either

Case I. all Ai’s are countable, or

Case II. there exists i0 ∈ N such that Ai0 is uncountable.

In the first case, the union
⋃

i∈N Ai itself is also countable. In the second case, the

complement A∁
i0
must be countable and so(⋃

i∈N

Ai

)∁

=
⋂
i∈N

A∁
i ⊂ A∁

i0
.

This means
⋃

i∈N Ai is countable. Hence the union
⋃

i∈N Ai belongs to A, and the proof

is completed.
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Proposition 2.5 (Trace σ-field). Let (Ω,F) be a measurable space and E ⊂ Ω is a

given nonempty set. Then

FE := {E ∩ A | A ∈ F}

is a σ-field over Ω.

Proof. The proof is left as an Exercise 2.1..

Proposition 2.6 (Pre-image σ-field). Let (Ω′,F′) be a measurable space, Ω a nonempty

set, and f : Ω → Ω′ a given map. Then

Ff := {f−1(A′) | A′ ∈ F′}

is a σ-field. Then is a σ-field over Ω

Proof. The proof is left as an Exercise 2.6.

In probability theory, the properties (σ1) – (σ3) are interpretted in terms of events

as follows.

◦ (σ1) says that we can always observe the certain event.

◦ (σ2) says that if we could observe the occurrence of an event A, then we could also

observe the non-occurrence of A.

◦ (σ3) and its implication (c) from Proposition 2.2 says that if we could observe the

events A and B, then we could also observe whether at least one or both of them

occurs.

In practice, we usually start from few base events (or primitive events) rather than

the whole σ-field of events. We may, for example, recall from Example 1.11 that the

primitive events Odd, Even, High, and Low are of our initial focus — other events are

generated later. We take the same approach here: starting with few primitive events

and generate a complete σ-field from there. To accomplish this idea, we first consider

the following results.

Proposition 2.7. Let Ω be a nonempty set and {Fλ}λ∈Λ be a collection of σ-fields

over Ω. Then F :=
⋂

λ∈Λ Fλ is also a σ-field over Ω.

Proof. Follows directly from the definition of a σ-field.

Proposition 2.8. Suppose that Ω is a nonempty set and E ⊂ 2Ω be a nonempty family

of subsets of Ω. Then there exists a unique smallest σ-field over Ω containing E, defined

by

σ(E) :=
⋂{

F ⊂ 2Ω |F ⊃ E is a σ-field over Ω.
}

(2.1)

Proof. Since the powerset 2Ω is a σ-field containing E, hence the intersection in (2.1)

is nonempty. In view of Proposition 2.7, the family σ(E) is a σ-field. Moreover, this

intersection is a subset of all the σ-fields containing E. This shows that σ(E) is the

smallest of such σ-fields.
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Definition 2.9. Suppose that Ω is nonempty and let E ⊂ 2Ω be nonempty family

containing base events. Then the collection σ(E), as defined in (2.1), is called the σ-field

generated by E. On the other hand, if F is a σ-field over Ω such that F = σ(E) for some

collection of sets E ⊂ 2Ω, then F is said to be generated by E.

It is unfortunate that σ(E) has no explicit or constructive formula. Therefore it is

usually not possible to make a descriptive list of its elements. One should have seen from

the earlier examples that even in the case where Ω is finite, the enumeration of σ(E) is

a tough job. One might think that σ(E) could be constructed, for any E, by adding to

the family E all possible countable unions of its members and complements. But this it

not true, even when we repeat such a process uncountably (see a discussion in Schilling

[1, pp.20–21]).

Let us consider some of the simpler examples.

Example 2.10. Let Ω be a finite set, and E = {{ω} | ω ∈ Ω}. Then σ(E) = 2Ω. ▲

Example 2.11. Let Ω = {a, b, c, d} and E = {{a, b}, {b, c}}. Then σ(E) = 2Ω. ▲

More generally, one could come up with the following result.

Proposition 2.12. Let Ω be given, and Ω is partitioned into A1, A2, . . . , AN (which

means Ω = A1 ⊎ · · · ⊎ AN). Then #σ({A1, . . . , AN}) = 2N .

Proof. The proof is left as an Exercise 2.4.

2.2. Probability measures

We split this section into two subsections. The first subsection focuses on the defi-

nition of a probability measure itself as well as some examples, without the need to use

additional properties. The second subsection focuses on deriving further properties and

their applications in finance and actuarial examples.

2.2.1. The definition

Let us begin directly with the definition of a probability measure and a probability

space.

Definition 2.13. Let (Ω,F) be a measurable space. A probability measure (or simply

a probability) on (Ω,F) is a function P : F → [0, 1] such that the following conditions

are satisfied:

(P1) P (Ω) = 1.

(P2) For any sequence of events (Ai)i∈N in E such that Ai ∩ Aj = ∅ for all i, j ∈ N
with i ̸= j, it holds

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).
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Whenever P is a probability measure on (Ω,F), the tripple (Ω,F, P ) is called a proba-

bility space.

The defining properties (P1) and (P2) of a probability measure could be utilized, as

seen in the following examples.

Example 2.14 (SOA Exam P Sample Question). You are given that P (A ∪ B) = 0.7

and P (A ∪B∁) = 0.9. Calculate P (A).

Solution. One may notice that (A∪B∁)∁ = A∁ ∩B = B \A. This allows us to calculate

(B \ A) = P ((A ∪B∁)∁) = 1− P (A ∪B∁) = 1− 0.9 = 0.1.

Since A ∪B = A ⊎ (B \ A), we get from (P2) that

0.7 = P (A ∪B) = P (A ⊎ (B \ A)) = P (A) + P (B \ A) = P (A) + 0.1,

which yields P (A) = 0.6. ▲

Example 2.15 (SOA Exam P Sample Question). In modeling the number of claims

filed by an individual under an automobile policy during a three-year period, an actuary

makes the simplifying assumption that for all integers n ≥ 0, p(n + 1) = 0.2p(n)

where p(n) represents the probability that the policyholder files n claims during the

period. Calculate the probability that a policyholder files more than one claim.

Solution. In this example, Ω = {0, 1, 2, . . . } = N0 and F = 2Ω. Note that the events

that a policyholder files n claims are disjoint for different integers n ≥ 0. This means

1 = P (Ω) = P (0) + P (1) + P (2) + · · · =
∞∑
n=0

P (n) = P (0)
∞∑
n=0

(0.2)n =
P (0)

1− 0.2
,

so that we obtain P (0) = 0.8. Finally, we calculate

P (2) + P (3) + · · · = 1− P (0)− P (1) = 1− 0.8− 0.2× 0.8 = 0.04. ▲

Apart from the examples above and the ones already seen in Chapter 1, we take this

opportunity to present a more sophisticated example of a probability space.

Example 2.16. In the unit interval [0, 1], we put I := {(a, b) | 0 ≤ a < b ≤ 1} to be

the set of all open subintervals of [0, 1].

◦ Consider Ω = [0, 1]. The Borel σ-field, denoted by B([0, 1]), is defined by

B([0, 1]) = σ(I).

Then there exists a unique probability measure P : B([0, 1]) → [0, 1] such that

P (I) = b− a, .

for any subinterval I ⊂ [0, 1] with endpoints a ≤ b. This is a known result in measure

theory (see e.g. Schilling [1]), but the proof is outside of the scope of this note.
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◦ A similar result can be carried out in the n-dimensional case. Consider Ω = [0, 1]n.

The Borel σ-field over [0, 1]n = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
n times

, denoted B([0, 1]n), is defined by

B([0, 1]n) = σ(In),

where In :=
{∏n

j=1 Ij | Ij’s are subintervals of [0, 1].
}
denotes the set of all rectangles

in [0, 1]n. It could be proved (refer again to Schilling [1]) that there exists a unique

probability measure P : B([0, 1]n) → [0, 1] such that

P

(
n∏

j=1

Ij

)
= (bj − aj)× · · · × (b1 − a1),

for any intervals Ij’s having endpoints 0 ≤ a ≤ b ≤ 1. It is important to note

that P (A) coincides with the n-dimensional volume of any event A ∈ B([0, 1]n). ▲

Example 2.17. Consider the Borel construction ([0, 1],B, P ).

Calculate the probability that a randomly selected point ω ∈ [0, 1] belongs to the

set A = [0, 0.1) ∪ (0.4, 0.6) ∪ (0.9, 1].

Solution. COMPLETE

Example 2.18. Consider the Borel construction ([0, 1]2,B, P ), and let A = [0, 0.5] ×
[0.5, 1] ∪ [0.5, 1]× [0, 0.5].

Calculate the probability that a randomly selected point ω ∈ [0, 1]2 belongs to the set A.

Solution. COMPLETE

2.2.2. Properties of a probability measure

Now we turn to discuss some basic properties of a probability measure, followed

along the way by the sample cases where the properties apply.

We shall begin with the probability of a complemented event which then leads to

say that the probability of an impossible event is 0.

Proposition 2.19. Let (Ω,F, P ) be a probability space. Then

(a) P (A∁) = 1− P (A) for any A ∈ F.

(b) P (∅) = 0.

Proof. Let A ∈ F, then we have Ω = A ∪ A∁. Since A and A∁ are disjoint, (P1) and

(P2) imply that 1 = P (Ω) = P (A) + P (A∁), proving (a). The item (b) follows from (a)

with A = Ω.

Example 2.20.

◦ The probability of not getting a tail in the trial of 10 coin tosses.

◦ The probability of getting head and tail simultaneously in a single coin toss. ▲
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The next proposition simply says that a larger event implies a larger probability.

Proposition 2.21 (Monotonicity.). Let (Ω,F, P ) be a probability space and A,B ∈ F.

Then

A ⊂ B =⇒ P (A) ≤ P (B).

Proof. The conclusion follows since

P (A) ≤ P (A) + P (B \ A) = P (A ∪ (B \ A)) = P (B).

Example 2.22. In drawing a card randomly from a standard deck, the probability of

drawing a club is less than of drawing a black card. ▲

The following proposition complements the additivity property (P2) in the definition

of a probability measure. Here, we do not ask for the sets to be pairwise disjoint.

Proposition 2.23 (Sub-σ-additivity.). Let (Ω,F, P ) be a probability space and {Ai}i∈N
be a countable collection of events in F. Then

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

Proof. Let B1 := A1 and define Bi by

Bi = Ai \
i−1⋃
j=1

Aj

for i ∈ N with i ≥ 2. It is clear that {Bi}i∈N is a collection of pairwise disjoint events

with
∞⋃
i=1

Bi =
∞⋃
i=1

Ai.

This gives

P

(
∞⋃
i=1

Ai

)
= P

(
∞⋃
i=1

Bi

)
=

∞∑
i=1

P (Bi) =
∞∑
i=1

P

(
Ai \

i−1⋃
j=1

Aj

)
≤

∞∑
i=1

P (Ai),

where the last inequality follows from Proposition 2.21.

Example 2.24 (Hedging by combination). The risk (i.e. probability) of losing money

invested in both assets cannot be worse than the sum of the individual risks of the two

assets. ▲

The next two results show the monotonicity of a probability measure when applied

respectively to a nondecreasing and a nonincreasing sequence of events.
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Proposition 2.25. Let (Ω,F, P ) be a probability space and {Ai}i∈N be a nondecreasing

sequence of events in F, i.e. Ai ⊂ Ai+1 for all i ∈ N. Then

P

(
∞⋃
i=1

Ai

)
= lim

i→∞
P (Ai).

Proof. Since {Ai}i∈N is nondecreasing, we have

Ai = A1 ⊎ (A2 \ A1) ⊎ · · · ⊎ (Ai \ Ai−1)

for each i ∈ N. It follows that
∞⋃
i=1

Ai = A1 ⊎
∞⊎
j=2

(Aj \ Aj−1).

Finally, the σ-additivity condition (P2) implies

P

(
∞⋃
i=1

Ai

)
= P (A1) +

∞∑
j=2

P (Ai \ Ai−1)

= lim
i→∞

[
P (A1) +

i∑
j=2

P (Ai \ Ai−1)

]
= lim

i→∞
[P (Ai)]

Corollary 2.26. Let (Ω,F, P ) be a probability space and {Ai}i∈N be a nonincreasing

sequence of events in F, i.e. Ai+1 ⊂ Ai for all i ∈ N. Then

P

(
∞⋂
i=1

Ai

)
= lim

i→∞
P (Ai).

Proof. The proof is left as an Exercise 2.5.

The remaining of this section discusses the Poincaré formula, which allows one to

make a computation of those secondary events (which includes those add/or events).

We present the formula first for the case of 2 sets, then extend it to the one for 3 sets

and finally the general formula for n sets. This formula is, perhaps, one of the most

common topics in the SOA’s Exam P.

Proposition 2.27 (Poincaré formula). Let (Ω,F, P ) be a probability space and A,B ∈ F

be any two events. Then P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. Recall that A = (A ∩ B) ∪ (A ∩ B∁) and the sets (A ∩ B)and(A ∩ f ∁) are

disjoint. Then P (A) = P (A ∩ B) + P (A ∩ B∁). Similarly, we obtain that P (B) =

P (A ∩B) + P (B ∩ A∁). Combining the two formulae, we get

P (A) + P (B) = P (A ∩B) + [P (A ∩B) + P (A ∩B∁) + P (B ∩ A∁)].
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Since (A ∩ B), (A ∩ B∁), and (B ∩ A∁) are pairwise disjoint and their union is A ∪ B,

we have arrived at

P (A) + P (B) = P (A ∩B) + P (A ∪B),

which completes the proof.

Proposition 2.28 (Poincaré formula for 3 sets). Let A1, A2, A3 be three events. Then

P (A1 ∪ A2 ∪ A3) =P (A1) + P (A2) + P (A3)

− P (A1 ∩ A2)− P (A1 ∩ A3)− P (A2 ∩ A3) + P (A1 ∩ A2 ∩ A3).

Proof. Follows from Proposition 2.27.

Let us see the use of the Poincaré formulae (both Propositions 2.27 and 2.28) in the

following examples.

Example 2.29 (SOA Exam P Sample Questions). The probability that a visit to

a primary care physician’s (PCP) office results in neither labwork nor referral to a

specialist is 35%. Of those coming to a PCP’s office, 30% are referred to specialists

and 40% require lab work. Calculate the probability that a visit to a PCP’s office

results in both lab work and referral to a specialist.

Solution. Let Ω be the set of visitors of PCP’s office and A,B ⊂ Ω refers, respectively, to

the set of those who require lab work and those who are referred to specialists. The σ-

field here is probably F = σ({A,B}) (but this is not of interests for the question). We

aim to calculate P (A ∩B). From the given information, we get

P (A) = 0.4, P (B) = 0.3, P ((A ∪B)∁) = 0.35.

It is implies that P (A∪B) = 1−0.35 = 0.65. The Poincaré formula (Proposition 2.27),

it follows that

P (A ∩B) = P (A) + P (B)− P (A ∪B) = 0.4 + 0.3− 0.65 = 0.05. ▲

Example 2.30 (SOA Exam P Sample Questions). A survey of a group’s viewing habits

over the last year revealed the following information:

(i) 28% watched gynmastics

(ii) 29% watched baseball

(iii) 19% watched soccer

(iv) 14% watched gynmastics and baseball

(v) 12% watched baseball and soccer

(vi) 10% watched gynmastics and soccer

(vii) 8% watched all three sports.
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Calculate the percentage of the group that watched none of the three sports during the

last year.

Solution. Take Ω to be the set of all people in the group. Set A, B, and C to be

subsets of Ω consisting of people in the group that watched gymnastics, baseball, and

soccer, respectively. The σ-field here is probably F = σ({A,B,C}) (but it is not of

interests here). The question aims to calculate the probability of (A ∪ B ∪ C)∁. From

the information of the question, we deduce that

P (A) = 0.28, P (B) = 0.29, P (C) = 0.19,

P (A ∩B) = 0.14, P (B ∩ C) = 0.12, P (A ∩ C) = 0.1, P (A ∩B ∩ C) = 0.08.

Using the Poincaré formula (Proposition 2.28), we obtain P (A ∪ B ∪ C) = 0.48 and

finally we get

P ((A ∪B ∪ C)∁) = 1− P (A ∪B ∪ C) = 0.52. ▲

Poincare formula in general case.

2.3. Zero-probability events and almost sure events

In the following, we make a counter-intuitive remark on events with zero probability.

Definition 2.31. Consider a probability space (Ω,F, P ). An event A ∈ F that has zero

probability, i.e. P (A) = 0, is called a negligible event.

Despite the simple statement, a zero-probability eventmay indeed occur as described

in the following example.

Example 2.32. Consider a wood stick of a unit length, represented by Ω = [0, 1] and

let a person blindly pinpoint a position ω ∈ Ω on the stick. This resembles an instance of

Example 2.16 with n = 1. We may consider the Borel σ-field B(Ω) and a probability P

over (Ω,B(Ω)) in such a way that, for any interval [a, b] ⊂ Ω, we have P ([a, b]) = b− a.

This means the probability that the pointed position ω belongs to a position [a, b] is

computed by the proportion of the length of [a, b] to the whole unit length. One could

simply observe that P ({ω}) = 0 for any ω ∈ Ω, however one of them must be realized.

The key takeaway from this paradoxical example is that zero-probability events do

happen. In fact, this is a typical property when one considers continuous outcomes.

This means the concept of negligibility is not the same as impossibility, and implies

that events with probability 1 are not certain events eiter. This motivates the following

terminology.

Definition 2.33. Let (Ω,F, P ) be a probability space. An event A ∈ F is called an

almost sure (briefly a.s.) event if its complement A∁ is negligible. We also say that an

event A occurs almost surely (also abbreviated to a.s.).



19

Corollary 2.34. Every a.s. event has a probability of 1.

Proof. Follows from Proposition 2.19.

To correctly understand zero-probability events, we look through the frequentist

view:

A probability of an event conveys to an infinite number of independent

trials as a limit of the ratio
#occurence

#trials
as #trials → ∞.

With this intuition, a negligible event is simply an event in which this ratio tends to 0.

2.4. Independent events and conditional probability

Let us start with a definition.

Definition 2.35. Let (Ω,F, P ) be a probability space. Then the two events A,B ∈ F

are called independent if

P (A ∩B) = P (A)P (B).

To illustrate the idea, we consider some examples.

Example 2.36. Recall Example 1.9. The events {X1 = H} and {X2 = H} are inde-

pendent, as we have

P ({X1 = H} ∩ {X2 = H}) = P ({(H,H)}) = 1

4

and

P ({X1 = H})P ({X2 = H}) = 1

2
· 1
2
=

1

4
.

We can similarly show that the events {X1 = T} and {X2 = T} are independent. On

the other hand, the events {X1 = H} and {X1 = T} as well as {X2 = H} and {X2 = T}
are not independent.

Example 2.37. Recall Example 1.11. The events Odd and Even are not independent,

as one may see that

P (Odd ∩ Even) = P (∅) = 0

while we have

P (Odd)P (Even) =
1

2
· 1
2
=

1

4
.

Similarly, we can observe that neither two of the events Odd, Even, High and Low are

independent.

Example 2.38 (SOA Exam P Sample Question). An actuary studying the insurance

preferences of automobile owners makes the following conclusions:
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(i) An automobile owner is twice as likely to purchase collision coverage as disability

coverage.

(ii) The event that an automobile owner purchases collision coverage is independent

of the event that he or she purchases disability coverage.

(iii) The probability that an automobile owner purchases both collision and disability

coverages is 0.15.

Calculate the probabiliyt that an automobile owner purchases neither collision nor dis-

ability coverage.

Solution. Let A and B be events that an automobile owner purchases collision coverage

and disability coverage, respectively. We know from the question that P (A) = 2P (B)

and that P (A ∩ B) = 0.15. Since A and B are independent, it follows from Defini-

tion 2.35 that 0.15 = P (A∩B) = P (A)P (B) = 2P (B)2. We obtain P (B) =
√

0.15
2

and

consequently

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 3P (B)− P (A ∩B) ≈ 0.67.

Finally, it is concluded that P ((A ∪B)∁) = 1− P (A ∪B) ≈ 0.33. ▲

We now turn to the concept of a conditional probability and some illustrative exam-

ples.

Definition 2.39. Let (Ω,F, P ) be a probability space and A,B ∈ F are two events

with P (B) > 0. The conditional probability of A given B is the quantity

P (A|B) :=
P (A ∩B)

P (B)
.

Example 2.40. A survey group consists of 1000 people. Among them, 45% are male.

Of all the people in this group, 120 males and 180 females used to have COVID-19.

What is the probability that an infected member is a female ?

Solution. Let Ω be the sample space containing all the people in the survey group, and

let F = 2Ω be its σ-field of events. We call M and F the sets of all male and female

members, respectively, and C the set of members who used to have COVID-19. The

question asked for P (F |C), which could be calculated by

P (F |C) =
P (F ∩ C)

P (C)
=

0.18

0.3
=

3

5
. ▲

For convenience, we consider an arbitrary probability space (Ω,F, P ) in the subse-

quent results unless otherwise specified. **Consider moving this**

Proposition 2.41. Let A and B be two events with P (B) > 0. If A and B are

independent, then P (A|B) = P (A).

Proof. Directly follows from the definition.
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Theorem 2.42 (Bayes’ rule). Let A and B be two events with P (A), P (B) > 0. Then

P (B|A) = P (A|B)P (B)

P (A)
.

Proof. Since P (A ∩B) = P (A|B)P (B), we get

P (B|A) = P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A)
.

The above Bayes’ rule (also known as the Bayes’ theorem) plays a very important

role in modern statistics, data science, and other data-driven subjects. It describes

how an arrival of new information could impact the evaluation of a probability. Let us

demonstrate such use in the following example.

Example 2.43. Suppose that a population is affected by a disease. Suppose that a

probability of a person to be infected is known to be P (Infected) = 0.3. The probability

of a person to have a positive test result (including both true and false positives) from

an self-test kit is P (Positive) = 0.32, while the self-test kit is known to be 85% accurate

on infected patients i.e. P (Positive|Infected) = 0.9.

Now, we repeat that, without knowing the self-test result, we only know that the

probability of a person to be infected is P (Infected) = 0.3. If this person has a positive

self-test result (here comes a new piece of information), then the probability is updated

to

P (Infected|Positive) = P (Positive|Infected)P (Infected)

P (Positive)
=

0.9× 0.3

0.32
= 0.84375.

This shows how an arrival of a new information could improve the confidence level of

an event, using the Bayes’ rule.

2.5. Bayes’ rule for partitions and scenario trees

In this section, we consider another important consequence of the Bayes’ rule, which

describes how a probability of an event can be decomposed into its partition. It is also

the theorem behind the probability computation using a scenario tree.

Theorem 2.44 (Bayes’ rule for partitions). Let {Bi}i∈N be a family of events that

forms a partition of Ω, i.e. the collection {Bi}i∈N is pairwise disjoint and Ω =
⊎∞

i=1 Bi.

Suppose that P (Bi) > 0 for all i ∈ N. The the following formula holds

P (A) =
∞∑
i=1

P (A|Bi)P (Bi)

for any event A.
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Proof. Since {Bi}i∈N is pairwise disjoint, so as the family {A ∩ Bi}i∈N. It is also true

that A =
⊎∞

i=1(A ∩Bi). Using the σ-additivity of P , we obtain

P (A) = P

(
∞⊎
i=1

(A ∩Bi)

)
=

∞∑
i=1

P (A ∩Bi) =
∞∑
i=1

P (A|Bi)P (Bi).

Let us illustrate how the above theorem is used in a scenario tree technique in

the following examples. We start with a very simple problem of two consecutive coin

flippings and card drawings.

Example 2.45. Consider the problem of flipping a fair coin twice, and we are looking

for the event where a head (H) shows up in at least one of the two flips. The sample

space is simply

Ω := {(H,H), (H,T), (T,H), (T,T)}

and the σ-field of events is the whole power set, i.e. F := 2Ω. The probability P of each

event is computed based on the counting principle

P (A) :=
#A

#Ω
.

The event that we are after is represented by

A∗ := {(H,H), (H,T), (T,H)},

so the counting principle clearly yields P (A∗) =
3

4
.

Next, we show an alternative approach of computing P (A∗) by using a scenario tree

as shown below:

Ω

H

T

H

T

H

T

First flip Second flip

1
2

1
2

1
2

1
2

1
2

1
2

Ω

H

T

H

T

H

T

First flip Second flip

P (H∗)

P (T∗)

P (HH|H∗)

P (HT|H∗)

P (TH|T∗)

P (TT|T∗)

Figure 5.1: Scenario tree of flipping a coin twice.

Explanation...

Example 2.46. Consider drawing two cards, one after another, from a full deck of

standard playing cards. Find the probability that one of the two cards is a Queen of

Hearts.

A standard deck of playing cards consists of 52 cards. The deck is divided into 4

suits, namely, Clubs (C), Diamonds (D), Hearts (H), and Spades (S). Each suit consists
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of 13 card faces, namely, A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K. We shall specify a card with a

format of FS, where F and S represents respectively the suit and face. For example, the

Queen of Hearts is written QH.

The sample space of this problem is

Ω :=

(F1S1,F2S2)

∣∣∣∣∣∣∣
F1,F2 ∈ {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}

S1,S2 ∈ {C,D,H, S}
F1S2 ̸= F2S2

 ,

while the σ-field of events can simply be the power set, i.e. F := 2Ω. The probabil-

ity P (A) of an event A is defined based on the counting principle

P (A) =
#A

#Ω
.

Of course, the probability of having QH in one of the two draws corresponds to the

event A∗ defined by

A∗ := A∗
1 ⊎ A∗

2, A∗
1 := {(QH, ∗) | ∗ ̸= QH}, A∗

2 := {(∗,QH) | ∗ ̸= QH},

which gives P (A∗) =
#A∗

#Ω
=

#A∗
1 +#A∗

2

#Ω
=

51 + 51

52× 51
.

Now, we frame the problem in a more natural way (the structure of A∗ is a hint

in itself). In the first draw, we partition the possible outcomes into two disjoint cases

— getting QH (the event A∗
1) and not getting QH (the event (A∗

1)
∁). Next we focus on

the second draw given that A∗
1 or (A∗

1)
∁ occurs. If A∗

1 is known to occur, A∗ is already

accomplished so that

P (A∗|A∗
1) = 1.

On the other hand, if (A∗
1)

∁ occurs, the occurence of A∗ is equivalent to that the outcome

of the second draw is QH. Hence we come up with

P (A∗|(A∗
1)

∁) = P (The second draw is QH.) =
1

51
.

Finally we conclude, using Theorem 2.44, that

P (A∗) = P (A∗|A∗
1)P (A∗

1) + P (A∗|(A∗
1)

∁)P ((A∗
1)

∁) =
1

52
× 1 +

51

52
× 1

51
=

51 + 51

52× 51
.

The best way to actually come up with the latter calculation is to use a scenario

tree.

Next, we demonstrate another way to utilize the Bayes’ rule in actuarial situations.

Example 2.47 (SOA Exam P Sample Quesiton). An auto insurance company isures

drivers of all ages. An actuary compiled the following statistics on the company’s insured

drivers:
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Age of Driver Probability of Accident Portion of Company’s Insured Drivers

16–20 0.06 0.08

21–30 0.03 0.15

31–65 0.02 0.49

66–99 0.04 0.28

A randomly selected driver that the company insures has an accident. Calculate the

probability that the driver was age 16–20.

Solution. Let Ω be the sample space containing all insured drivers and let A1, A2, A3, A4

be the event that a driver’s age is 16–20, 21–30, 31–65, 66–99, respectively. It holds

that Ω = A1 ⊎ A2 ⊎ A3 ⊎ A4.

Let B be the event that an insured driver has an accident. Then the table shows

P (A1) = 0.08, P (B|A1) = 0.06,

P (A2) = 0.15, P (B|A2) = 0.03,

P (A3) = 0.49, P (B|A3) = 0.02,

P (A4) = 0.28, P (B|A4) = 0.04.

Using the Bayes’ formula (Theorem 2.42), we have

P (A1|B) =
P (B|A1)P (A1)

P (B)
.

We have from Theorem 2.44 also

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) + P (B|A4)P (A4).

Combining the two, we obtain

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) + P (B|A4)P (A4)

≈ 0.1584. ▲

Example 2.48 (SOA Exam P Sample Question). An insurance company issues life

insurance policies in three separate categories: Standard, Preferred, and Ultra-preferred.

Of the company’s policyholders, 50% are standard, 40% are preferred, and 10% are

ultra-preferred. Each standard policyholder has probability 0.01 of dying in the nex

year, each preferred policyholder has probability 0.005 of dying in the next year, and

each ultra-preferred policyholder has probability 0.001 of dying in the next year.

A policyholder dies in the next year. Calculate the probability that the deceased

policyholder was ultra-preferred.

Solution. We construct the following table to summarize the information given in the

question:
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Categories Percentage of policyholders Probability of dying

Standard 50% 0.01

Preferred 40% 0.005

Ultra-preferred 10% 0.001

Let A1, A2, and A3 denote the events that a policyholder is Standard, Preferred,

and Ultra-preferred, respectively. If Ω is the sample space containing all policyholders,

then Ω = A1 ⊎ A2 ⊎ A3.

Let B be the event that a policyholder dies in the next year. Then we have

P (A1) = 0.5, P (B|A1) = 0.01,

P (A2) = 0.4, P (B|A2) = 0.005,

P (A3) = 0.1, P (B|A3) = 0.001.

Using Theorems 2.42 and 2.44, it follows that

P (A3|B) =
P (B|A3)P (A3)

P (B)

=
P (B|A3)P (A3)

P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3)

≈ 0.0141. ▲
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Practice problems 2

2.1. Prove Proposition 2.5.

2.2. Prove Proposition 2.6.

2.3. Suppose that Ω′ = {0, 1, 2} be equipped with a σ-field F′ = 2Ω. Let Ω =

{(H,H), (H,T), (T,H), (T,T)} and define a map f : Ω → Ω′ by

f((H,H)) = 2, f((H,T)) = f((T,H)) = 1, f((T,T)) = 0.

Calculate the σ-field Ff .

2.4. Prove Proposition 2.12.

2.5. Prove Corollary 2.26.

2.6. Give a detailed proof of Proposition 2.28.

2.7. A doctor is studying the relationship between blood pressure and heartbeat abnor-

malities in her patients. She tests a random sample of her patients and notes their

blood pressures (high, low, or normal) and their heartbeats (regular or irregular).

She finds that:

(i) 14% have high blood pressure.

(ii) 22% have low blood pressure.

(iii) 15% have an irregular heartbeat.

(iv) Of those with an irregular heartbeat, one-third have high blood pressure.

(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

Calculate the portion of the patients selected who have a regular heartbeat and

low blood pressure.

2.8. A public health researcher examines the medical records of a group of 937 men who

died in 1999 and discovers that 210 of the men died from causes related to heart

disease. Moreover, 312 of the 937 men had at least one parent who suffered from

heart disease, and, of these 312 men, 102 died from causes related to heart disease.

Calculate the probability that a man randomly selected from this group died of

causes related to heart disease, given that neither of his parents suffered from

heart disease.

2.9. An auto insurance company has 10,000 policyholders. Each policyholder can be

classfied as

(i) young or old;

(ii) male or female; and

(iii) married or single.

Of these policyholders, 3000 are young, 4600 are male, and 7000 are married.

The policyholders can also be classified as 1320 young males, 3010 married males,

and 1400 young married persons. Finally, 600 of the policyholders are Young Mar-

ried Male persons.
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Calculate the number of the company’s policyholders who are young, female, and

single.

2.10. Upon arrival at a hospital’s emergency room, patients are categorized according to

their condition as critical, serious, or stable. In the past year:

(i) 10% of the emergency room patients were critical;

(ii) 30% of the emergency room patients were serious;

(iii) the rest of the emergency room patients were stable;

(iv) 40% of the critical patients died;

(v) 10% of the serious patients died; and

(vi) 1% of the stable patients died.

Given that a patient survived, calculate the probability that the patient was cate-

gorized as serious upon arrival.



Chapter 3. Discrete random variables

A random variable is a numeric representation of an uncertain event. Eventhough a

random variable is not really a variable, it is usually treated as if it is a variable, but its

value depends on a random event. We actually have used the idea of a random variable

before, without realizing or calling it a random variable.

We have already exploited unofficially the concept of a random variable earlier in

various examples. Let us now give state its formal definition of a discrete variable.

Definition 3.1. Let (Ω,F) be a measurable space. A function X : Ω → E, with a

countable set E, is called a discrete random variable (or briefly a discrete r.v.) on (Ω,F)

if the preimage

{X = x} := X−1({x}) = {ω ∈ Ω | X(ω) = x}

is measurable, for all x ∈ E.

Remark. The following remarks are in order.

◦ The countable set E could be any abstract set. In many applications (including dice

rolling or counting heads in coin tosses), it is natural to set E = Z which has an

advantage of being computable. In some other applications (like head-or-tail or card

faces), there is no natural way to represent an event numerically. One would see that

having E = Z is a huge benefit that allows the study of expectation.

◦ The discrete nature is usually understood directly from the context (the countability

of E) and the term random variable (or r.v.) is usually used with its prefix omitted.

The following examples shall illustrate the use of a random variable.

Example 3.2. Consider tossing a coin twice, so that Ω = {(H,H), (H,T), (T,H), (T,T)}
and F = 2Ω. Set E = {H,T} and define X1, X2 : Ω → E by

X1((H,H)) = X1((H,T)) = H,

X1((T,H)) = X1((T,T)) = T,

X2((H,H)) = X2((T,H)) = H,

X2((H,T)) = X2((T,T)) = T.

We could see that X1 and X2 are r.v.s representing the outcomes of the first and second

toss, respectively. These r.v.s are examples of those in which numerical representation

is not natural.
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