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Topic Overview

This introduction shall covers the following topics:

• Introduction to Optimization Modeling

• Unconstrained Optimization

− Principles of Unconstrained Optimization
− Gradient Descent Algorithm and its Variants
− Numerical Examples

• Constrained Optimization

− Principles of Constrained Optimization
− Constrained Optimization Solvers

• Heuristic Approach
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Constrained Optimization



Constrained Optimization

Recall that a constrained optimization problem requires two main in-
gredients, (1) an objective function f and (2) a constraint set C.

The problem is formulated as

Min(f ,C)

 min f (x)

s.t. x ∈ C.

The presence of the constraint helps us narrow down the solution, but
at the same time increase the complication of the problem.

A point x that satisfies the constraint (i.e. x ∈ C) is said to be feasible.
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Structured Constrained Optimization Problem

Very often, the constraint set C is described by inequalities and equal-
ities:

C =

{
x ∈ Rn

∣∣∣∣∣ gi(x) ≤ 0, ∀i = 1,2, · · · , r
hj(x) = 0, ∀j = 1,2, · · · , l

}

In this case, Min(f ,C) and LMin(f ,C) will be represented by Min(f ,g,h)
LMin(f ,g,h), respectively, with

Min(f ,g,h)


min f (x)
s.t. gi(x) ≤ 0 ∀i = 1,2, · · · , r

hj(x) = 0 ∀j = 1,2, · · · , l .

If there is no equality constraints, then we just write Min(f ,g).
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Karush-Kuhn-Tucker (KKT) Conditions

To solve a structured constrained optimization problem, one resorts to
the KKT conditions: ∇f (x) +

∑r
i=1 λi∇gi(x) +

∑l
j=1 µj∇hj(x) = 0,

λigi(x) = 0 for all i = 1, · · · , r ,

for some scalars λ1, · · · , λr ≥ 0 and µ1, · · · , µl ∈ R.

The second conditions are called the complementarity conditions, which
states that if an inequality constraint gi(x) < 0 holds strictly (i.e. it is
inactive), then λi = 0. This ‘deactivate’ the participation of its gradient
∇gi(x) in the first condition.

We write x̄ ∈ KKT (f ,g,h) if the KKT conditions holds at x̄ for some
scalars λ1, · · · , λr ≥ 0 and µ1, · · · , µl ∈ R.
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Principles of Structured Constrained Optimization Problems

Necessity: Under some ‘technical’ assumptions,

x̄ ∈ LMin(f ,g,h) =⇒ x̄ ∈ KKT (f ,g,h).

Sufficiency: If x̄ is feasible and x̄ ∈ KKT (f ,g,h) with multipliers λ̄ and
µ̄ and the following holds:

d⊤∇2
xL(x̄ , λ̄, µ̄)d > 0, ∀d :


∇g⊤

i (x̄)d ≤ 0 if gi(x̄) = 0,

∇g⊤
i (x̄)d = 0 if gi(x̄) = 0 and λ̄i > 0,

∇hj(x̄)⊤d = 0 for all j = 1, · · · , l ,

then x̄ ∈ LMin(f ,g,h).

In the above expression, L(x , λ, µ) = f (x)+
∑

i λi∇gi(x)+
∑

j µj∇hj(x).

6



Principles of Structured Constrained Optimization Problems

Necessity: Under some ‘technical’ assumptions,

x̄ ∈ LMin(f ,g,h) =⇒ x̄ ∈ KKT (f ,g,h).

Sufficiency: If x̄ is feasible and x̄ ∈ KKT (f ,g,h) with multipliers λ̄ and
µ̄ and the following holds:

d⊤∇2
xL(x̄ , λ̄, µ̄)d > 0, ∀d :


∇g⊤

i (x̄)d ≤ 0 if gi(x̄) = 0,

∇g⊤
i (x̄)d = 0 if gi(x̄) = 0 and λ̄i > 0,

∇hj(x̄)⊤d = 0 for all j = 1, · · · , l ,

then x̄ ∈ LMin(f ,g,h).

In the above expression, L(x , λ, µ) = f (x)+
∑

i λi∇gi(x)+
∑

j µj∇hj(x).

6



Principles of Structured Constrained Optimization Problems

Necessity: Under some ‘technical’ assumptions,

x̄ ∈ LMin(f ,g,h) =⇒ x̄ ∈ KKT (f ,g,h).

Sufficiency: If x̄ is feasible and x̄ ∈ KKT (f ,g,h) with multipliers λ̄ and
µ̄ and the following holds:

d⊤∇2
xL(x̄ , λ̄, µ̄)d > 0, ∀d :


∇g⊤

i (x̄)d ≤ 0 if gi(x̄) = 0,

∇g⊤
i (x̄)d = 0 if gi(x̄) = 0 and λ̄i > 0,

∇hj(x̄)⊤d = 0 for all j = 1, · · · , l ,

then x̄ ∈ LMin(f ,g,h).

In the above expression, L(x , λ, µ) = f (x)+
∑

i λi∇gi(x)+
∑

j µj∇hj(x).

6



Principles of Structured Constrained Optimization Problems

Necessity: Under some ‘technical’ assumptions,

x̄ ∈ LMin(f ,g,h) =⇒ x̄ ∈ KKT (f ,g,h).

Sufficiency (convex programs): If x̄ is feasible, f ,g1, · · · ,gr are all con-
vex and h1, · · · ,hl are all affine, then

x̄ ∈ KKT (f ,g,h) =⇒ x̄ ∈ LMin(f ,g,h).

7



Principles of Structured Constrained Optimization Problems

Necessity: Under some ‘technical’ assumptions,

x̄ ∈ LMin(f ,g,h) =⇒ x̄ ∈ KKT (f ,g,h).

Sufficiency (convex programs): If x̄ is feasible, f ,g1, · · · ,gr are all con-
vex and h1, · · · ,hl are all affine, then

x̄ ∈ KKT (f ,g,h) =⇒ x̄ ∈ LMin(f ,g,h).

7



Principles of Structured Constrained Optimization Problems

Necessity (linear constraints): If all gi ’s and hj ’s are affine, then
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Principles of Structured Constrained Optimization Problems

To find a point x̄ ∈ LMin(f ,g,h):
Filter: Find all KKT points x̄ with multipliers λ̄ and µ̄.
Confirm: Check the positivity of ∇2

xL(x̄ , λ̄, µ̄) at each KKT points.
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KKT is somewhat sensitive.

The KKT conditions are somewhat sensitive.

The same problem
formulated differently may yield totally opposite results.

Consider the problems {
min x1 + x2

s.t. x2
1 + x2

2 = 1.
(1)

and {
min x1 + x2

s.t. (x2
1 + x2

2 − 1)2 = 0.
(2)
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Some MATLAB Solvers for
Structured Problems



Well-known solvers

The following solvers are well known and many of them can be called
in Matlab.

• fmincon – General nonlinear programs

• linprog – Linear programs

• quadprog – Linearly constrained quadratic programs (LQP)

• intlinprog – Mixed integer linear programs (MILP)

• CVX – Structured convex programs

• Gurobi / Mosek / CPLEX / AMPL / etc.

Keep in mind that there is no algorithm that can be used to find a true
(local) optimum for general nonlinear programs.

Hence, eventhough the above solvers succeeded, the the reported
result can be incorrect.
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fmincon

The tool fmincon solves a structured constrained optimization problem
that takes the form

min f (x)
s.t. ci(x) ≤ 0 ∀i = 1,2, · · · , r

ceqj(x) = 0 ∀j = 1,2, · · · , l
Ax ≤ b
Aeq · x = beq
lb ≤ x ≤ ub.

by the command

fmincon(f,x0,A,b,Aeq,beq,lb,ub,nonlcon)

where nonlcon outputs the nonlinear constraints c and ceq in a vector
form.

Ex. Let’s try fmincon with the soft drink manufacturing problem.
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linprog

The tool fmincon solves a structured linear program that takes the
form 

min f⊤x
s.t. Ax ≤ b

Aeq · x = beq
lb ≤ x ≤ ub.

by the command

linprog(f,A,b,Aeq,beq,lb,ub).

Ex. Let’s try linprog with the portfolio optimization problem.
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linprog for sequential investment planning (1)

General purpose. Suppose that you have an initial amount of money
C0 to invest over a time period of T years in N zero-coupon bonds.
Each bond k pays an interest rate ρk that compounds each year, and
pays the principal plus compounded interest at the end of a maturity
period mk . The objective is to maximize the total amount of money
after T years.

28



linprog for sequential investment planning (2)

Ex. Invest $1,000 in N = 4 types of bonds B1, · · · ,B4 over the period
of T = 5 years.

B1: Can be purchased in Year 1. Maturity period of 4 years.
Interest rate of 2%.

B2: Can be purchased in Year 5. Maturity period of 1 year.
Interest rate of 4%.

B3: Can be purchased in Year 2. Maturity period of 4 years.
Interest rate of 6%.

B4: Can be purchased in Year 2. Maturity period of 3 years.
Interest rate of 6%.

We also create B0 for the choice not to invest in any bonds. The inter-
est rate for B0 is bank interest rate ρ0 = 0.25%, which is assumed to
be fixed over the period.
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linprog for sequential investment planning (2)

Year 1 Year 2 Year 3 Year 4 Year 5

B0
x5

0.25%
x6

0.25%
x7

0.25%
x8

0.25%
x9

0.25%

B1
x1

2%

B2
x2

4%

B3
x3

6%

B4
x4

6%

Let xk denotes the amount of investment according to the above table and rk = (1 + ρk/100)mk

denotes the net return of Bk .

Profit after Year 5 = r2x2 + r3x3 + r9x9. ← maximized.
Constraints:
Initial capitol: x1 + x5 = 1000
Year 2 capitol: x3 + x4 + x6 = r5x5

Year 3 capitol: x7 = r6x6

Year 4 capitol: x8 = r7x7

Year 5 capitol: x2 + x9 = r1x1 + r4x4 + r8x8
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linprog for sequential investment planning (2)
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quadprog

The tool fmincon solves a structured linearly constrained quadratic
program that takes the form

min 1
2 x⊤Hx + f⊤x

s.t. Ax ≤ b
Aeq · x = beq
lb ≤ x ≤ ub.

by the command

quadprog(H,f,A,b,Aeq,beq,lb,ub).

Ex. Let’s try to use quadprog to find an optimal separating plane in the
SVM model.
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quadprog for SVMs
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intlinprog

The tool fmincon solves a structured linear program that takes the
form 

min f⊤x
s.t. Ax ≤ b

Aeq · x = beq
lb ≤ x ≤ ub
xj ∈ Z, for j ∈ I ⊂ {1, · · · ,n}

by the command

intlinprog(f,I,A,b,Aeq,beq,lb,ub).

Ex. Let’s try intlinprog with a service provider problem.
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linprog/intlinprog for service provider problems

General statement.
A service company that has N hubs requires to serve its M clients.

Each hub i has an ability to provide mi of commodities.
Each client j has his/her demand ri that needs to be satisfied.
This company aims to supply all the demand at the minimum cost, by
sending yij commodities from the hub i to the client j that would then
inflict some fixed service cost cij .
Remark: This problem statement is generally linear, but more often than not,
involves integrality constraints.

Total cost =
∑N

i=1
∑M

j=1 cijyij ← minimized.
Constraints:
Hub availability: At each i ,

∑M
j=1 yij ≤ mi .

Demand satisfactory: At each j ,
∑N

i=1 yij ≥ rj

Integrality constraints: yij ∈ Z for (i , j) ∈ I.
Other problem-specific constraints.
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intlinprog in logistics (1)

Ex. A transportation company has 5 hubs, namely Samut Prakan
(city), Pathum Thani, Chachoengsao, Nakhon Nayok, and Rayong
(city), that stock empty containers. This company needs to provide
these containers to the 6 ports in Samut Prakan (Bang Pu), Samut
Prakan (Suvarnabhumi), Prachin Buri, Sa Kaeo, Chonburi, and Ray-
ong (Pluak Daeng).
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intlinprog in logistics (2)

The container stocks (xi ) and port demands (rj ) are as follows:

Empty containers
Samut Prakan (city) 10
Pathum Thani 8
Chachoengsao 8
Nakhon Nayok 7
Rayong (city) 9

Container demand
Samut Prakan (Bang Pu) 8
Samut Prakan (Suvarnabhumi) 7
Prachin Buri 7
Sa Kaeo 6
Chonburi 6
Rayong (Pluak Daeng) 7
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intlinprog in logistics (3)

The containers are transported by lorries (the company possesses
enough lorries). Each lorry carries up to 2 containers.

The transportation cost bore by each lorry is directly proportional to
the distance with the cost/km. = THB300. The (rounded) distances dij

from hub i to port j are given in the following table.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
BP SVP PB SK CB PD

i = 1 SP 15 20 148 175 108 120
i = 2 PT 78 60 143 194 162 173
i = 3 CCS 100 92 69 95 72 83
i = 4 NN 132 107 59 110 153 161
i = 5 RY 153 154 186 213 54 47
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intlinprog in logistics (3)

We can now formalize our optimization problem.

Cost =
∑N

i=1
∑M

j=1 cijyij ← minimized.
cij = 300dij ,
(yij the number of lorries sent from hub i to port j .)

Constraints.
Hub availability: At each i ,

∑M
j=1 xij ≤ mi .

Demand satisfactory: At each j ,
∑N

i=1 xij ≥ rj

Integrality constraints: xij , yij ∈ Z for all i , j .
Lorry capacity constraint: xij ≤ 2yij .
Non-negativity constraint: xij , yij ≥ 0.
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Metaheuristics



Heuristics & Metheuristics

Both heuristic and metaheuristic algorithms are based on intuition,
metaphor and natural experience rather than systematical construc-
tion like the gradient descent or Newton’s methods.

Many of these
methods do not have any supporting theory.

The goal of such approach is to find a “good enough” solution that
meets certain criteria. These algorithms are claimed to be global opti-
mization algorithms.

We have to be careful with the term global in this context, as it rather
means a local solution that is better than some other local solutions
than the true global optimum that one would imagined of.

39



Heuristics & Metheuristics

Both heuristic and metaheuristic algorithms are based on intuition,
metaphor and natural experience rather than systematical construc-
tion like the gradient descent or Newton’s methods. Many of these
methods do not have any supporting theory.

The goal of such approach is to find a “good enough” solution that
meets certain criteria. These algorithms are claimed to be global opti-
mization algorithms.

We have to be careful with the term global in this context, as it rather
means a local solution that is better than some other local solutions
than the true global optimum that one would imagined of.

39



Heuristics & Metheuristics

Both heuristic and metaheuristic algorithms are based on intuition,
metaphor and natural experience rather than systematical construc-
tion like the gradient descent or Newton’s methods. Many of these
methods do not have any supporting theory.

The goal of such approach is to find a “good enough” solution that
meets certain criteria. These algorithms are claimed to be global opti-
mization algorithms.

We have to be careful with the term global in this context, as it rather
means a local solution that is better than some other local solutions
than the true global optimum that one would imagined of.

39



Heuristics vs Metaheuristics

Heuristics refer to algorithms where the structures and contexts of a
specific problem were taken into account, like the traveling salesman
and knapsack problems.

Metaheuristics, on the other hand, are designed to work with any prob-
lems without using any problem-specific knowledge. Well-known algo-
rithms of this category are

• Particle Swarm Optimization (PSO)*

• Genetic Algorithm (GA)*

• Ant Colony Optimization

• Bee Colony Optimization

• Tabu Search

• etc.
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Classical vs Metaheuristic Algorithms

Usually, classical iterative algorithms based on the gradient are more
effective. The downside is that it does not always work and it requires
computing the gradients or even the Hessians.

In some applications, we need to minimize a function that we have
no knowledge about its gradient or Hessian. And the metaheuristic
algorithms are the only option here to derive an “acceptable” solution.

Applications that usually require metaheuristics are (hyper)parameter
estimations.
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PSO

PARTICLE SWARM OPTIMIZATION.

Initialization:
Generate an initial population of particles (points in the search space).
While: Not satisfied;
Evaluation: Evaluate the objective value at each candidate.
Local update: Each particle memorizes its own best-known position
(local best). The new position is then compared with the previous local
best.
Global update: All local bests are compared and the best one is mem-
orized as the global best.
Movement: Each particle updates its position based on the local and
global bests.
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GA

GENETIC ALGORITHMS.

Initialization:
Generate an initial population of candidate solutions. Each candidate
is coded as a finite sequence of genes, called a chromosome.
While: Not satisfied;
Evaluation: Compute the fitness value of each candidates using a
choice of fitness function.
Selection: Select the best candidates based on their fitness values.
Crossover: The selected candidates are paired and new candidates
are generated by combining the chromosomes of their parents using
the chosen crossover method.
Mutation: A percentage of the new offsprings are randomly mutated
by introducing a small random changes.
Replacement: The new population is created from the few fittest can-
didates and the newly created candidates.
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Conclusion and remarks



Conclusion and remarks

• To hand-calculate the constrained optimum, we solve it through the
KKT conditions.

• Most of the classical gradient-based iterative methods are based on
the KKT conditions.

• GA works best with discrete search spaces.

• PSO works best with continuous search spaces.

• Metaheuristics do not require gradient information.

• No best-for-all algorithm exists.
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Thank you.
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