Optimization Modeling — Part 2/4

Deterministic models

Parin Chaipunya

KMUTT

- [∟] Mathematics @ Faculty of Science
- [∟]The Joint Graduate School of Energy and Environments

Areas of research:

- o Multi-agent optimization: Bilevel programs, Game theory
- Optimization modeling: mainly focused on energy and environmental applications

A coordinated course with Metropolitan Electricity Authority (MEA) on STOCHASTIC OPTIMIZATION

by Parin CHAIPUNYA (KMUTT, Thailand) and Michel DE LARA (ENPC, France)

17 Nov - 18 Dec 2025

The main objective of this lecture is to get you to know the **framework and workflow of optimization and modeling**.

Table of contents

Modeling workflow

Modeling examples/exercises
Single time-step economic dispatch
Multiple time-step economic dispatch (independent case)
Multiple time-step economic dispatch (dynamic case)
Transmission line expansion

Conclusion

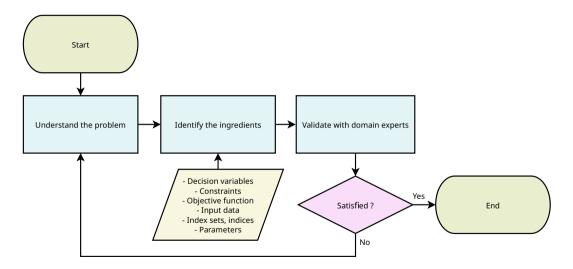
What is optimization modeling?

"Modeling is communication."

Optimization modeling is the process of turning a real-life decision problem into a solvable mathematical program.

Modeling workflow 3 / 40

Modeling workflow



Modeling workflow 4 / 40

Common modeling mistakes

- Using or putting together wrong units (kW vs MW vs MWh).
- o Missing some constraints (e.g., ramping, buffer time)
- o Choosing objective that does not reflect the true goal.
- o Forgetting integer decisions.
- Forgetting domain bounds.
- Over-simplifying.
- o Writing nonlinear constraints when a linear equivalent exists.

Modeling workflow 5 / 40

Modeling checklist

- List all ingredients
- o Ensure variable units are consistent
- Write a tiny numerical example (mini-case)
- Check the solution for integrity
- Make a table/visualization summarizing everything

Modeling workflow 6 / 40

Section 2

Modeling examples/exercises

Modeling examples/exercises 7 / 40

Subsection 1

Single time-step economic dispatch

Modeling examples/exercises 8 / 40

Story

A system operator must supply a known demand at a single moment (e.g., one hour). There are several generation technologies available:

- o gas
- coal
- peaker

Each technology has:

- o a cost per MWh,
- o a maximum production capacity,

We want to meet the demand at minimum cost.

Modeling examples/exercises 9 / 40

To do the modeling, first we fill up the following table.

Notation	Quantifier	Description
Sets		
1		The set of technologies, indexed with $i \in I$.
Parameters (Data)		
D		The known demand (MW).
C_i	$\forall i \in I$	Cost per MWh of technology i .
P_i^{max}	$\forall i \in I$	Maximum capacity (MW).
Decision variables		
$u_i \geq 0$	$\forall i \in I$	How much the technology i outputs (MW)
Constraints		
$\sum_{i\in I}u_i=D$		The production meets exactly the demand.
$0 \le u_i \le P_i^{max}$	$\forall i \in I$	Capacity limits of each technology.
Objective function		
$\sum_{i \in I} C_i u_i \leftarrow Minimize$		The total generation cost summing up
		$C_i u_i = \underbrace{C_i}_{\text{cost per MWh}} \times \underbrace{u_i}_{\text{power output}} \times \underbrace{1}_{\text{one hour}}$

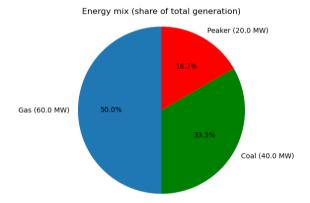
Modeling examples/exercises 10 / 40

Once we finished, the parameters section tells us the data we need for the model. In this case, the data is provided in the following table.

Technology	Cost (€/MWh)	Maximum capacity (MW)	Demand (MW)
Gas	20	60	
Coal	40	40	120
Peaker	120	100	

Modeling examples/exercises 11 / 40

Once the model is solved, we get this optimal energy mix.



Modeling examples/exercises 12 / 40

Subsection 2

Multiple time-step economic dispatch (independent case)

Modeling examples/exercises 13 / 40

In this section, we make the case of Example 1 more complicated.

Story

A system operator must supply a known demand during each 60 minutes window for a day.

There are several generation technologies available:

- gas
- coal
- peaker
- o solar pv (supposed that the solar availability is known)

Each technology has:

- o a cost per MWh,
- o a maximum production capacity,

We want to meet the demand at minimum cost.

Modeling examples/exercises 14 / 40

Notation	Quantifier	Description
Sets		
1		The set of technologies excluding solar pv, indexed with $i \in I$.
T		The set of time-steps, indexed with $t \in T$.
Paramete	rs (Data)	
Δt		The duration of between time-steps.
D_t	$orall t \in \mathcal{T}$	The known demand at time t (MW).
C_i	$\forall i \in I$	Cost per MWh of technology i.
P_i^{max}	$\forall i \in I$	Maximum capacity (MW).
S_t	$\forall t \in \mathcal{T}$	Available solar pv power (MW) at the time-step t
		(probably from the forecase).

Modeling examples/exercises 15 / 40

Notation	Quantifier	Description
Decision variables		
$u_{i,t} \geq 0$	$\forall i \in I, \ \forall t \in T$	How much the technology i outputs
		during the time-step t (MW).
$u_t^{pv} \geq 0$	$orall t \in \mathcal{T}$	Solar pv power injected durint the time-step t (MW).
Constraints		
$\sum_{i\in I} u_{i,t} + u_t^{pv} = D_t$	$orall t \in \mathcal{T}$	The production meets exactly the demand
		at each time-step t .
$0 \leq u_{i,t} \leq P_i^{max}$	$\forall i \in I, \ \forall t \in T$	Capacity limits of each technology.
$0 \leq u_t^{pv} \leq S_t$	$orall t \in \mathcal{T}$	Capacity limit of solar pv.
Objective function		
$\sum_{i \in I} C_i u_i \Delta t \leftarrow Minimize$		The total production cost.

Modeling examples/exercises 16 / 4

We now need some data, the table earlier and also the hourly demand and solar pv forecast.

Hour

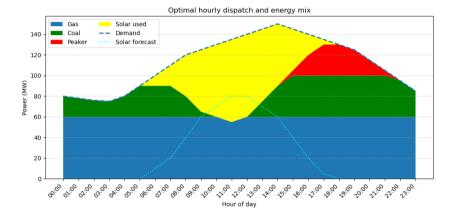
Demand (MW)

Solar forecast (MW)

				00:00	80	
				01:00	78	(
				02:00	76	
				03:00	75	(
				04:00	80	
				05:00	90	
				06:00	100	1
				07:00	110	2
-				08:00	120	4
	Technology	Cost (€/MWh)	Maximum capacity (MW)	09:00	125	6
	Gas	20	60	10:00	130	7
				11:00	135	8
	Coal	40	40	12:00	140	8
	Peaker	120	100	13:00	145	7
-				14:00	150	6
				15:00	145	4
				16:00	140	2
				17:00	135	!
				18:00	130	(
				19:00	125	(
				20:00	115	(
				21:00	105	(
				22:00	95	(
				23:00	85	(

Modeling examples/exercises 17 / 40

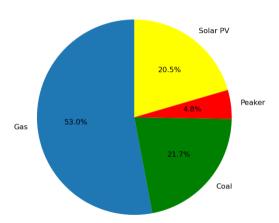
Once the model is solved, we get this optimal energy dispatch.



Modeling examples/exercises 18 / 40

Once the model is solved, we get this optimal energy mix.

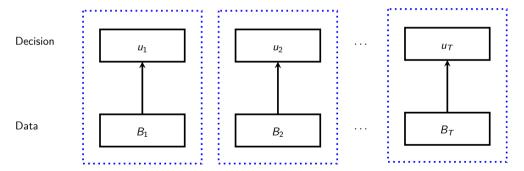
Energy mix over 24 hours



Modeling examples/exercises 19 / 40

The characteristic of this decision model is that the decisions are time-independent, *i.e.*, decision at a time-step t has no influence on the future time-step t+1.

This behavior is illustrated in the following diagram, where each blue dotted box is actually an independent problem.



Modeling examples/exercises 20 / 40

Subsection 3

Multiple time-step economic dispatch (dynamic case)

Modeling examples/exercises 21 / 40

In this example, we need to introduce an additional ingredient — the states.

We write generically a **state space** \mathfrak{X} , with the state element $x \in \mathfrak{X}$.

Typically, a current state $x \in \mathcal{X}$ and a decision $u \in \mathcal{U}$ together bring us into a new state through a dynamical equation

$$x^+ = f(x, u),$$

where $f: \mathcal{X} \times \mathcal{U} \to \mathcal{X}$ is the operator that describes this dynamics.

We may take the battery level as an example. In this case, the state $x \in \mathcal{X} = \mathbb{R}$ is the battery level, $(u_{\text{charge}}, u_{\text{discharge}}) \in \mathcal{U} = \mathbb{R}^2$ is the decided amounts of charge and discharge and

$$x^+ = f(x, u) = x + u_{\text{charge}} - u_{\text{discharge}}$$

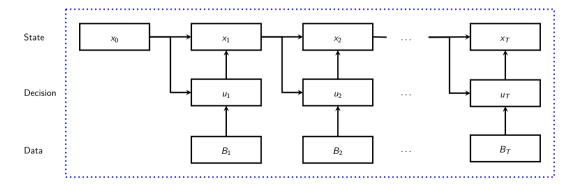
describes the dynamics.

Modeling examples/exercises 22 / 40

In this example, we shall explore the case where a decision at time-step t alters some states that affects a decision at t+1.

Here the decision u_{t+1} is made with the knowledge of the state x_t , and the state x_{t+1} is updated with a dynamical equation $x_{t+1} = f(x_t, u_t)$.

This is best illustrated by the following diagram.



Modeling examples/exercises 23 / 40

Story

A system operator must supply a known demand during each 60 minutes window for a day. There are several technologies available:

- o gas
- coal
- o peaker
- o solar pv (supposed that the solar availability is known)
- o a battery unit.

Each technology has:

- o a cost per MWh,
- o a maximum capacity,
- o a charge/discharge capacity and efficiency for the battery.

We want to meet the demand at minimum cost.

Modeling examples/exercises 24 / 40

Notation	Quantifier	Description	
Sets			
1		The set of technologies excluding solar pv, indexed with $i \in I$.	
T		The set of time-steps, indexed with $t \in T$.	
Parameters	(Data)		
Δt		The duration of between time-steps.	
D_t	$orall t \in \mathcal{T}$	The known demand at time t (MW).	
C_i	$\forall i \in I$	Cost per MWh of technology i.	
P_i^{max}	$\forall i \in I$	Maximum capacity (MW).	
S_t	$orall t \in \mathcal{T}$	Available solar pv power (MW) at the time-step t .	
<i>x</i> ₀		The initial energy state of the battery (MWh).	
x^{max}		The maximum energy capacity of the battery (MWh).	
$P_+^{\sf max}$		The maximum charging power of the battery (MW).	
P^{max}		The maximum discharging power of the battery (MW).	
$\eta_+ \in [0,1]$		The charging efficiency of the battery.	
$\eta \in [0,1]$		The discharging efficiency of the battery.	

Modeling examples/exercises 25 / 4

Notation	Quantifier	Description
Decision and state variables		
$u_{i,t} \geq 0$	$\forall i \in I, \ \forall t \in T$	How much the technology i outputs
		during the time-step t (MW).
$u_t^{pv} \geq 0$	$orall t \in \mathcal{T}$	Solar pv power injected durint the time-step t (MW).
$u_t^+ \geq 0$	$orall t \in \mathcal{T}$	Charging power of the battery during the time-step t (MW).
$u_t^- \geq 0$	$orall t \in \mathcal{T}$	Discharging power of the battery during the time-step t (MW).
$x_t \geq 0$	$orall t \in \mathcal{T}$	The state of charge of the battery at the time-step t (MWh).

Modeling examples/exercises 26 / 40

Notation	Quantifier	Description
Constraints		
$\sum_{i \in I} u_{i,t} + u_t^{pv} + u_t^- = D_t + u_t^+$	$orall t \in \mathcal{T}$	Power balance at each time-step t .
$0 \leq u_{i,t} \leq P_i^{max}$	$\forall i \in I, \ \forall t \in T$	Capacity limits of each technology.
$0 \leq u_t^{pv} \leq S_t$	$orall t \in \mathcal{T}$	Capacity limit of solar pv.
$0 \leq u_t^+ \leq P_+^{\sf max}$	$orall t \in \mathcal{T}$	The charging capacity at each time-step t .
$0 \leq u_t^- \leq P^{\sf max}$	$orall t \in \mathcal{T}$	The discharging capacity at each time-step t .
$0 \le x_t \le x^{max}$	$orall t \in \mathcal{T}$	Energy capacity limit at each time-step t .
$x_t = x_{t-1} + \eta_+ u_t^+ \Delta t - \frac{1}{\eta} u_t^- \Delta t$	$orall t \in \mathcal{T}$	The battery's state-of-charge dynamical equation.
Objective function		
$\sum_{i \in I} C_i u_i \Delta t \leftarrow Minimize$		The total production cost.

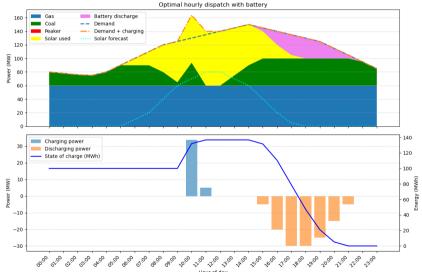
Modeling examples/exercises 27 / 4

In addition to the data required in Example 2, we need the following battery data.

Parameter	Value
x ^{max}	200 MWh
P_+^{max}	50 MW
$P^{\sf max}$	50 MW
η_+	0.95
η	0.95
<i>x</i> ₀	100 MWh

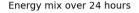
Modeling examples/exercises 28 / 4

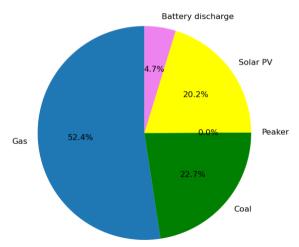
The following is the visualization of the optimal economic dispatch.



Modeling examples/exercises 29 / 40

The following is the visualization of the optimal economic dispatch.





Modeling examples/exercises 30 / 40

Subsection 4

Transmission line expansion

Modeling examples/exercises 31 / 40

Story

- Some lines are now frequent bottlenecks, forcing power to take longer or less efficient paths and, in extreme cases, causing unavoidable load shedding when flows cannot reach certain regions.
- Building new lines can relieve these bottlenecks, but each project is costly and must be justified by tangible operational improvements.
- The operator needs a systematic way to decide which candidate lines to build, balancing investment costs against gains in reliability, reduced congestion, and avoided load shedding.

Modeling examples/exercises 32 / 40

Notation	Quantifier	Description
Sets		
N		Set of buses, indexed by i and j .
L^{ex}		Set of existing transmission lines, indexed by ℓ
L^{cand}		Set of candidate transmission lines, indexed by k
Parameters		
d_i	$\forall i \in N$	Demand at bus i (MW).
gi	$\forall i \in N$	Net generation at bus i (MW).
c_k^{inv}	$orall k \in \mathit{L}^{cand}$	Investment cost of line k.
c_i^{shed}	$\forall i \in N$	Penalty cost of load shedding.
$\dot{\overline{\mathcal{F}}}_\ell$	$orall \ell \in \mathit{L}^{ex}$	Capacity of existing line ℓ (MW).
c_k^{inv} c_i^{shed} \overline{F}_ℓ $\overline{F}_k^{\text{new}}$	$orall k \in \mathit{L}^{cand}$	Capacity of candidate line k (MW).
$\stackrel{ ext{\tiny n}}{B_\ell}$	$orall \ell \in \mathit{L}^{ex}$	Susceptance of existing line ℓ .
B_k^{new}	$orall k \in \mathit{L}^{cand}$	Susceptance of candidate line k .
r=1		Reference bus for angle fixation.

Modeling examples/exercises 33 / 40

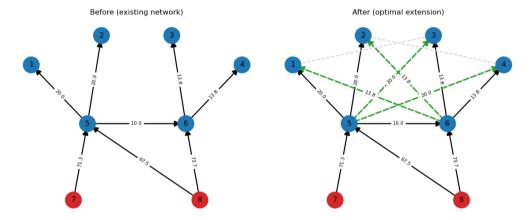
Notation	Quantifier	Description
Decision variables		
$u_i^{ heta} \in \mathbb{R}$	$\forall i \in N$	Voltage angle at bus i (rad).
$u_\ell^f \in \mathbb{R}$	$orall \ell \in \mathit{L}^{ex}$	Power flow on existing line ℓ (MW).
$u_k^f \in \mathbb{R} \ u_k^{f, new} \in \mathbb{R} \ u_i^{shed} \in \mathbb{R}$	$orall k \in \mathit{L}^{cand}$	Power flow on candidate line k (MW).
$u_i^{ ext{shed}} \in \mathbb{R}$	$\forall i \in N$	Load shedding (> 0) /spilling (< 0) at bus i (MW).
$u_k^inv \in \{0,1\}$	$orall k \in \mathit{L}^{cand}$	1 if line k is built.

Modeling examples/exercises 34 / 40

Notation	Quantifier	Description
Constraints		
$g_i - d_i + u_i^{shed} = \sum_{\ell = (i,j)}$	$u_{\ell}^{f} - \sum_{\ell=(j,i)} u_{\ell}^{f} + \sum_{k=(i,j)} u_{\ell}^{f}$	$\int_{0}^{\infty} u_{k}^{f,\text{new}} - \sum_{k=(j,i)} u_{k}^{f,\text{new}}$
	$\forall i \in N$	Power balance.
$u_{\ell}^f = B_{\ell} \left(u_i^{ heta} - u_j^{ heta} ight)$	$orall \ell = (i,j)$	DC flow on existing lines.
$u_k^{f,new} = B_k^{new} \left(u_i^{ heta} - u_j^{ heta} ight)$	$\forall k = (i, j)$	DC flow on candidate lines.
$0 \leq u_{\ell}^f \leq \overline{F}_{\ell}$	$orall \ell \in \mathit{L}^{ex}$	Capacity of existing lines.
$0 \le u_k^{f,new} \le \overline{F}_k^{new} u_k^{inv}$	$orall k \in \mathit{L}^{cand}$	Capacity of candidate lines.
$u_r^{\theta}=0$		Reference bus angle.
Objective function		
$\sum_{k \in L^{cand}} c_k^{inv} u_k^{inv} + \sum_{i \in \Lambda}$	$(u_i^{shed} (u_i^{shed})^2 \leftarrow Minimize)$	$\label{eq:minimize} \mbox{Minimize investment} + \mbox{quadratic penalty}.$

Modeling examples/exercises 35 / 40

The optimal expansion can be illustrated as follows.



Modeling examples/exercises 36 / 40

Section 3

Conclusion

Conclusion 37 / 40

Key takeaways

- o Optimization is a framework for turning decision problems into mathematics.
- o Modeling is a workflow, and it usually requires iterating many times through the processes.
- o Start simple and clean, then add complexity.
- o A mini-case is usually useful especially in a large-scape problem.
- o Always check the results and verify if it is physically realistic.

Conclusion 38 / 4

What's more?

- o Nonlinear and nonconvex programs (reformulate, simplify, or face it)
- Robustness (sensitivity analysis)
- Uncertainty (stochastic modeling)

Conclusion 39 / 40

-» Continue to Part 3.