Optimization Modeling — Part 1/4

First glances

Parin Chaipunya

- [∟]Mathematics @ Faculty of Science
- The Joint Graduate School of Energy and Environments

Areas of research:

- o Multi-agent optimization: Bilevel programs, Game theory
- o Optimization modeling: mainly focused on energy and environmental applications

A coordinated course with Metropolitan Electricity Authority (MEA) on STOCHASTIC OPTIMIZATION

by Parin CHAIPUNYA (KMUTT, Thailand) and Michel DE LARA (ENPC, France)

17 Nov - 18 Dec 2025

Overview

The main objective of this lecture is to get you to know the **framework and workflow of optimization and modeling**.

The lecture consists of 4 parts:

Part 1: First glances

Part 2: Deterministic models

Part 3: Recalls on prabability theory

Part 4: Basic stochastic models

Table of contents

General ideas about optimization
An optimization dictionary
A tale of a hungry wizard — a toy modeling example
What could it be?

Some theory

Linearity, quadraticity and convexity Local vs global optima Optimization with only equality constraints

Solvers and packages

Section 1

General ideas about optimization

General ideas about optimization 3 / 54

Subsection 1

An optimization dictionary

What is optimization?

Optimization

(n.) A process of making something as good as it can be.

Improvement

(n.) The act of making something better.

Mathematical optimization

(n.) Using and/or creating mathematical tools to do optimization.

General ideas about optimization 5 / 54

Where is optimization in the map of data analytics?

The four types of data analytics:

Descriptive: What happened in the past?
 Classical statistical tools, Data visualization, Clustering, etc.

Diagnostic: Why something happened in the past ?
 Data discovery, Data mining, Root cause analysis, etc.

Predictive: What is likely to happen in the future ?
 Regression, Classification, etc.

Prescriptive: How to make something happen?
 Optimization, Operations research, Reinforcement learning (repeated decision), etc.

- !! One should notice that Optimization remains the main tool when it comes to prescriptive analytics.
- !! Machine learning tools are largely predictive and descriptive in nature.
- !! ML tools are also useful to incorporate with Optimization.

General ideas about optimization 6 / 54

Ingredient dictionary of an optimization problem

Ingredient	Intuition	Expression
Decision variable	What you control.	$u\in\mathcal{U}$
Optimization space	The scope of what you control.	\mathfrak{U}
Objective function	The quantitative evaluation (outcome) of the decision.	$J:\mathcal{U}\to\mathbb{R}\cup\{+\infty\}$
Constraints	Limitations, represented as a set of admissible decisions.	$U^{ m ad}$

General ideas about optimization 7 / 54

Decision variable

It is typical that $\mathcal{U}=\mathbb{R}^n$ (n real variables), which means u is actually a vector

$$u=(u_1,\ldots,u_n).$$

Optimization sense

An objective function J could represent different quantities, e.g.

- o badness: cost, disutility, etc. (The lower, the better.)
- o **goodness:** profit, utility, etc. (The higher, the better.)

If J displays the badness, then we are looking at a **minimization problem**

$$\min_{u \in U^{\mathrm{ad}}} J(u).$$

If J displays the goodness, then we are looking at a maximization problem

$$\max_{u \in U^{\mathrm{ad}}} J(u).$$

Useful notations

- \circ arg min_{$u \in U^{ad}$} $J(u) = \{Admissible decisions that minimizes <math>J(u)\}$
- \circ arg max $_{u \in U^{ad}} J(u) = \{Admissible decisions that maximizes <math>J(u)\}$

General ideas about optimization 9 / 54

Optimization sense

Here and forward, it is conventional that the min, max, arg min and arg max are taken over U^{ad} , unless stated otherwise.

Observations

```
\circ \min J(u) = -\max [-J(u)]
\circ \max J(u) = -\min [-J(u)]
\circ arg min J(u) = \arg\max[-J(u)]
                                         (arg min is obtained from arg max of negative objective.)
\circ arg max J(u) = \arg\min [-J(u)]
                                         (arg max is obtained from arg min of negative objective.)
```

Useful notes

For $\lambda > 0$ and $\beta \in \mathbb{R}$, we have the following.

```
\circ \min[\lambda J(u)] = \lambda \min J(u)
```

$$\circ \min[J(u) + \beta] = [\min J(u)] + \beta$$

$$\circ$$
 arg min[$\lambda J(u)$] = arg min $J(u)$

o arg min
$$[\lambda J(u)]$$
 = arg min $J(u)$
o arg min $[J(u) + \beta]$ = arg min $J(u)$

General ideas about optimization 10 / 54

(The positive scaling does not affect arg min.)

(Shifting up and down do not affect arg min.)

Constraints

Usually the constraint set U^{ad} is **explicit**, which means it is defined using equations and inequalities

$$U^{\mathrm{ad}} = \left\{ u \,\middle|\, egin{aligned} g_i(u) &\leq 0 & i = 1, \dots, r \\ h_j(u) &= 0 & j = 1, \dots, \ell. \end{aligned}
ight\} = \left\{ \mathrm{Decisions\ satisfying\ certain\ equations\ and\ inequalities.}
ight\}.$$

Additionally, we may require some slices of u to be integers. In this case, we have $\mathcal{U}=\mathbb{R}^n$ and

$$U^{\mathrm{ad}} = \left\{ egin{aligned} u & g_i(u) \leq 0 & i = 1, \dots, r \ h_j(u) = 0 & j = 1, \dots, \ell \ u_k \in \mathbb{Z} & k \in \mathcal{K}_0 \end{aligned}
ight\}.$$

Here, $K_0 \subset \{1, \dots, n\}$ represents the set of indices of u_i 's that are required to be integers.

General ideas about optimization 11/54

General framework

An optimization problem (or a mathematical program, or a mathematical programming problem) takes the following form.

$$\left\{\begin{array}{ll} {\displaystyle \overbrace{\min /\max}} & {\displaystyle \overbrace{J(u)}} \\ {\displaystyle \sup_{s.t.}} & {\displaystyle g_i(u) \leq 0} & i=1,\ldots,r \\ & {\displaystyle h_j(u)=0} & j=1,\ldots,\ell \\ & {\displaystyle \underbrace{u \in C}} \\ & {\displaystyle \underset{possibly}{\text{possibly further limitations}}} \end{array}\right\} \text{ constraints}$$

General ideas about optimization 12 / 54

Subsection 2

A tale of a hungry wizard — a toy modeling example

General ideas about optimization 13 / 54

A tale of a hungry wizard

Once upon a time in a fruit market...

- A hungry wizard has a magic sack that carries 1 ton of anything.
- He loves apple and guava, so he wants to fill his magic sack full with these fruits.
- $\circ\,$ So he goes to a fruit merchant and asks for a combination of apple and guava.
- \circ A ton of apple is sold for 3 gold bars, and a ton of guava for 2 gold bar.
- o The merchant has 0.8 ton of each fruit.

Since the merchant knows optimization, he formulates his decision model.

General ideas about optimization 14 / 54

A mathematical tale of a hungry wizard

Decision variable

In the merchant's model, he sets $\mathcal{U}=\mathbb{R}^2$ and

$$u = (\underbrace{u_1}_{\text{sales amount of apple sales amount of guava}}, \underbrace{u_2}_{\text{sales amount of guava}}).$$

Objective function

The objective function is an evaluation of his sales performance (income), which is

$$J(u) = J(u_1, u_2) = \underbrace{3u_1}_{\text{apple sales}} + \underbrace{2u_2}_{\text{guava sales}}.$$

Constraints

There are a few constraints.

• The two fruits fill the sack full: $u_1 + u_2 = 1$

• Stock limitations: $u_1 \le 0.8, \ u_2 \le 0.8$

• Non-negativity: $u_1 \ge 0, u_2 \ge 0$

General ideas about optimization 15 / 54

Subsection 3

What could it be ?

What could it be? — Manufacturing

```
min Manufacturing cost
s.t. Demand constraint
Manufacturing limit
Material limit
```

General ideas about optimization 17 / 54

What could it be? — Resources

min Resources used
s.t. Order quantity
Product quality
Production formula

General ideas about optimization 18 / 54

What could it be? — Delivery

```
\left\{ \begin{array}{ll} \text{min} & \text{Distance travelled} \\ \text{s.t.} & \text{Visits all customers} \\ & \text{No subtour} \end{array} \right. \left\{ \begin{array}{ll} \text{min} & \text{Travel time} \\ \text{s.t.} & \text{Visits all customers} \\ & \text{No subtour} \end{array} \right.
```

General ideas about optimization 19 / 54

What could it be? — Load shifting

 $\begin{cases} \text{min} & \text{Bill payment} + \text{discomfort} \\ \text{s.t.} & \text{Demand dynamics} \\ & \text{Shift limits} \\ & \text{Total energy preserved} \end{cases}$

General ideas about optimization 20 / 54

What could it be? — Electricity production

```
min Production cost + Startup cost + Shutdown cost

s.t. Generation limits
    Transmission limits
    Demand balance
    Reserve margin constraint
    Emission limit
    Generator ramping constraints
```

General ideas about optimization 21 / 54

What could it be? — Transmission expansion planning

```
min Investment cost + Operation cost

s.t. Power flow balance

Material constraint

Budget constraint

Reliability constraint
```

General ideas about optimization 22 / 54

What could it be? — Electricity market clearing

```
\left\{ \begin{array}{ll} \text{max} & \text{Social welfare} = \text{Consumer benefit} - \text{Generation cost} \\ \\ \text{s.t.} & \text{Market balance} \\ \\ & \text{Network limits} \\ \\ & \text{Nodal pricing constraints} \end{array} \right.
```

General ideas about optimization 23 / 54

What could it be? — Storage management

```
\begin{cases} & \mathsf{min} & \mathsf{Generation}\; \mathsf{cost}\; + \; \mathsf{Battery}\; \mathsf{operation}\; \mathsf{cost} \\ & \mathsf{s.t.} & \mathsf{Power}\; \mathsf{balance} \colon \mathsf{generation}\; + \; \mathsf{discharge} = \mathsf{demand}\; + \; \mathsf{charge}\; \\ & \mathsf{Storage}\; \mathsf{limits}\; \\ & \mathsf{Storage}\; \mathsf{behaviors} \end{cases}
```

General ideas about optimization 24 / 54

What could it be? — Microgrid optimization

```
\left\{ \begin{array}{ll} \mbox{min} & \mbox{Cost of local generation} + \mbox{Import/export cost} \\ \\ \mbox{s.t.} & \mbox{Power balances} \\ \mbox{Renewable constraints} \end{array} \right.
```

General ideas about optimization 25 / 54

Section 2

Some theory

Some theory 27 / 54

Subsection 1

Linearity, quadraticity and convexity

Some theory 28 / 54

Linear programs (LP)

A **linear program: LP** is the problem where all the functions are defined by linear (affine) equations, equalities and inequalities.

A linear program has the form

$$\begin{cases} \min & e_1 u_1 + e_2 u_2 + \dots + e_n u_n \ (+e_0) \\ \text{s.t.} & a_{i1} u_1 + a_{i2} u_2 + \dots + a_{in} u_n \le b_i \quad i = 1, \dots, r \\ & c_{j1} u_1 + c_{j2} u_2 + \dots + c_{jn} u_n = d_j \quad j = 1, \dots, \ell. \end{cases}$$

In vector-matrix form, we write

$$\begin{cases} \min & e^{\top}u \ (+e_0) \\ \text{s.t.} & Au \leq b \\ Cu = d. \end{cases}$$

Some theory 29 / 54

Quadratic programs (QP)

A quadratic program: QP is an optimization problem taking the form

$$\begin{cases} & \text{min} \quad u^\top E u + e^\top u + e_0 = \sum_{i,j} e_{ij} u_i u_j + \sum_i e_i u_i + e_0 \\ & \text{s.t.} \quad A u \leq b \\ & \quad C u = d. \end{cases}$$

Some theory 30 / 54

A set $C \subset \mathbb{R}^n$ is **convex** if we have

$$(1-t)u+tv\in C$$
 for any $t\in [0,1]$ and any $u,v\in C$.

Examples

- A line segment is convex.
- A hyperplane (a set defined by linear equalities) is convex.
- A half space (a set defined by linear inequalities) is convex.
- o An intersection of convex sets is convex.

Some theory 31 / 54

A function $J: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is

convex if

for any $u,v\in\mathbb{R}^n$ and any $t\in[0,1]$,

$$J((1-t)u+tv)\leq (1-t)J(u)+tJ(v),$$

• **strictly convex** if for any $u, v \in \mathbb{R}^n$, $u \neq v$ and any $t \in (0, 1)$,

$$J((1-t)u+tv) < (1-t)J(u)+tJ(v),$$

• **strongly convex** (with modulus a > 0) if for any $u, v \in \mathbb{R}^n$ and any $t \in [0, 1]$,

$$J((1-t)u+tv) \leq (1-t)J(u)+tJ(v)-\frac{a}{2}t(1-t)\|u-v\|^2.$$

Fact

A strongly convex function is strictly convex, and a strictly convex function is convex.

Some theory 32 / 54

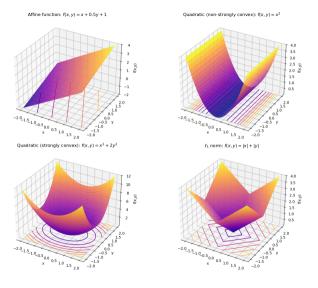


Figure: TL: affine TR: convex quadratic / BL: Strongly convex quadratic

Some theory

BR: Convex

Examples (and facts)

- An affine function (a function defined by a linear equation) is convex.
- A quadratic function is convex if *E* has no negative eigenvalues.
- A quadratic function is strongly convex if E has all positive eigenvalues. In this case $a = \min\{\text{eigenvalues of } E\}$.
- A positive scaling of a convex function is convex.
- A sum of convex functions is convex.
- A sum of convex functions with a strongly convex function is strongly convex.
- A pointwise supremum (maximum) of convex functions is convex.
- The set $\{u \mid g_i(u) \leq 0, i = 1, ..., r\}$, where g_i 's are convex, is convex.

Some theory 34 / 54

Convexity with calculus

If J is continuously twice differentiable, then its **Hessian matrix** is defined by

$$H_J(u) = \left[\frac{\partial^2 J}{\partial u_i \partial u_j}(u)\right]_{i,j}.$$

In this case, we have

J is convex $\iff H_J(u)$ has nonnegative eigenvalues at every u J is strictly convex $\iff H_J(u)$ has positive eigenvalues at every u J is strongly convex (with modulus a>0) $\iff H_J(u)$ has eigenvalues $\geq a$ at every u

Examples

- A quadratic function $J(u) = u^{\top} E u + e^{\top} u + e_0$ has a Hessian $H_J(u) = 2E$ at all u.
- An affine function $J(u) = e^{\top}u + e_0$ has a Hession $H_J(u) = 0$ at all u.

Some theory 35 / 54

Convex programs

A **convex program** is an optimization problem where J is a convex function and U^{ad} is a convex set.

Usually, U^{ad} is given by linear equalities and convex inequalities

$$U^{\mathsf{ad}} = \left\{ u \;\middle|\; egin{aligned} & \mathsf{g}_i(u) \leq 0 & i = 1, \dots, r \ & \mathsf{A}u = b \end{aligned}
ight. \right\},$$

where g_i 's are convex, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Some theory 36 / 5

Mixed-integer programs

A **mixed-integer program** is an optimization problem where some slices of u are required to be integers.

This is often combined with LPs or QPs, which respectively result in MILPs or MIQPs.

Some theory 37 / 54

Subsection 2

Local vs global optima

Local vs global optima

Definition

A decision \bar{u} is

 \circ a global minimizer of J if

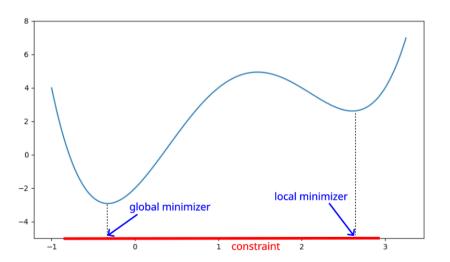
$$J(\bar{u}) \leq J(u)$$
 for any admissible decision $u \in U^{ad}$.

 \circ a **local minimizer** of J if

 $J(\bar{u}) \leq J(u)$ for any admissible decision $u \in U^{\text{ad}}$ near \bar{u} .

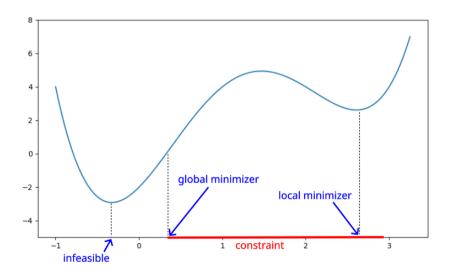
Some theory 39 / 54

Local vs global optima



Some theory 40 / 54

Local vs global optima



Some theory 41 / 54

Detecting local optima

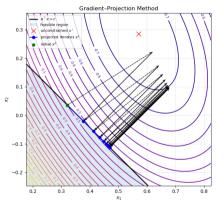
Fact

- o In a convex program, a local minimizer is a global minimizer. (Local becomes global)
- \circ An explicit convex program has a global minimizer if U^{ad} is bounded. (Existence)
- A strongly convex function has exactly one global minimizer. (Existence and uniqueness)

Some theory 42 / 54

Follow the slopes — Gradient-projection algorithm

A useful way to find a minimizer is to follow the slopes, using the gradient-projection algorithm.



Gradient-projection algorithm.

Input. Initial guess $u^{(0)}$, step length $\rho > 0$, tolerance $\varepsilon > 0$.

Output. Optimal decision \bar{u} .

Repeat

$$u^{(k+1)} \leftarrow \operatorname{proj}_{U^{\operatorname{ad}}}[u^{(k)} - \rho \nabla J(u^{(k)})]$$

until $\|\nabla J(u^{(k)})\| < \varepsilon$.

Some theory 43 / 54

Subsection 3

Optimization with only equality constraints

Some theory 44 / 54

Optimization with only equality constraints

We consider here the following optimization problem

$$\begin{cases} \min & J(u) \\ \text{s.t.} & h_j(u) = 0 \quad j = 1, \dots, \ell \end{cases}$$

with J and h_i 's being differentiable.

Thus we may take advantage of the gradients

$$abla J(u) = \left(rac{\partial J}{\partial u_i}(u)
ight)_i \quad ext{and} \quad
abla h_j(u) = \left(rac{\partial h_j}{\partial u_i}(u)
ight)_i$$

Some theory 45 / 54

Lagrange's approach

If we define a Lagrange function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ by

$$L(u, \lambda) = \underbrace{J(u)}_{\text{original cost}} + \underbrace{\sum_{j=1}^{\ell} \lambda_j h_j(u)}_{\text{weighted penalty}},$$

then we have the gradient

$$\nabla L(u,\lambda) = (\nabla_u L(u,\lambda), \nabla_\lambda L(u,\lambda))$$

where

$$abla_u L(u,\lambda) = \nabla J(u) + \sum_{j=1}^{\ell} \lambda_j \nabla h_j(u)$$

$$abla_{\lambda} L(u,\lambda) = (h_j(u))_j.$$

Some theory 46 / 5

Necessary condition (Sieve)

Theorem

Let $\bar{u} \in \mathbb{R}^n$. We suppose that the constraints are qualified*at \bar{u} .

Then a necessary condition for \bar{u} to be a local minimizer of J over $U^{\rm ad}$ is:

there exist $\bar{\lambda}_i$'s (called **Lagrange multipliers**) in which

$$\nabla L(\bar{u}, \bar{\lambda}) = 0. \tag{1}$$

Note that (1) is exactly the same as

$$abla J(ar u) + \sum_{j=1}^\ell ar\lambda_j
abla h_j(ar u) = 0, \quad h_j(ar u) = 0 \quad orall j = 1, \dots, \ell.$$

Some theory 47 / 54

^{*}For example, either (1) all h_j 's are linear, or (2) the gradients of $h_j(\bar{u})$'s are linearly independent, or (3) there is only one constraint.

Sufficient condition

Theorem

Let $\bar{u} \in \mathbb{R}^n$. We suppose that the objective function is convex and the constraints are linear. Then a sufficient condition for \bar{u} to be a global minimizer of J over U^{ad} is:

there exist $\bar{\lambda}_i$'s (called **Lagrange multipliers**) in which

$$\nabla L(\bar{u}, \bar{\lambda}) = 0.$$

Some theory 48 / 54

Section 3

Solvers and packages

Solvers and packages 49 / 54

Some off-the-shelf solvers

Solver	Comments	
CPLEX	Commercial. Free for small problems. Fully free for academics.	
Gurobi	Commercial. Free for small problems. Fully free for academics.	
GAMS	Commercial. Free trial. Fully free for academics.	
\mathtt{SCIP}^\dagger	Free and open-source. Also works with nonlinear problems.	
HiGHS	Free and open-source. Only for LPs.	
CBC	Free and open-source.	

Solvers and packages 50 / 54

[†]We shall use SCIP in our demo problems.

Some off-the-shelf packages

Package	Language	Description
PySCIPOpt	Python	Interface to SCIP (MIP, MINLP)
Pyomo	Python	General modeling language; supports many solvers
PuLP	Python	Lightweight LP/MIP modeling
CVXPY	Python	Convex optimization modeling
JuMP	Julia	High-performance modeling for LP/QP/MIP/NLP

Solvers and packages 51 / 54

The classes of optimization problems

Large mixed-integer problems are known to be slow to solve exactly. Hence we might have to rely on heuristic methods to *improve* the outcome and hope it is close enough to the minimizer.

Solvers and packages 52 / 54

Getting started with SCIP

Let's see a demo of how to use SCIP through PySCIPOpt.

Solvers and packages 53 / 54

-» Continue to Part 2.

Solvers and packages 54 / 54